

Chapter 11. Building Event Networks
In the preceding chapters, we’ve focused on rules that respond to events.
But there’s another way that rules and events interact: rules can raise
events. The power of KRL expands significantly when rules raise events
because rules can be used to build event networks. We call events that are
raised by a rule “explicit events.”
One of the key design goals for rule languages is to create rulesets that are
loosely coupled. Rules should add behavior in an accretive manner so that
rules can be added or deleted without affecting the behavior of other rules.

This chapter will explore explicit events and how they can be used to
create event networks. We will see that explicit events provide an
important means of abstraction in KRL through event synthesis and rule
chaining. A number of event intermediary patterns present themselves
once we can raise explicit events.

Understanding Event Types
There are two ways to create an explicit event. Explicit events can be
raised in the rule postlude using the raise statement or they can be
raised as an action using the raise_event() action.

The diagram in Figure 1 shows the difference between these two kinds of
explicit events. An explicit event in the postlude handles the event in the
same processing episode as the original event and results in a possibly
increased set of directives being sent back to the endpoint. The explicit
event causes further processing to happen on the rules engine without
further involvement by the endpoint.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 2

Figure 1. Explicit Event Types
In contrast, the raise_event() action sends instructions back to the
endpoint that cause it to raise another event. The disadvantage is that there
is a second round trip from the endpoint to KRE made in response to the
action. The advantage is that information on the endpoint can be sent
along with the new event and is thus available for processing on the rules
engine.

When an event is raised in the postlude, the event will have the event
domain explicit, so you would use an eventex like the following to
write a rule that is selected when this event is raised:

select when explicit <event_type>

When an event is raised by the endpoint in response to a
raise_event() action, the new event will have the event domain of
the endpoint raising the event. The following eventex would select a rule
based on an explicit event raised from the Web endpoint:

select when web <event_type>

Raising Explicit Events in the Postlude

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 3

Explicit events are raised in the rule postlude with a raise statement:

raise explicit event foo for “a16x48”

 with a = "hello"

 and b = 4 + x;

The for clause is optional. If it’s missing, the event will be raised within
the current ruleset. The for clause is followed by an expression that is
evaluated to determine which rulesets should see the event. The result of
the expression should be either a single string or an array of strings. The
strings represent ruleset IDs.

The with clause allows the developer to add event parameters to the
explicit event. The right-hand side of the individual bindings in the with
clause can be any KRL expression.

Like any other postlude statement, explicit events can be guarded:

raise explicit event foo

 with a = "hello"

 and b = 4 + x

 if (flipper == "two");

The event in the preceding example will only be raised if the variable
flipper has the value “two.”

Explicit events allow KRL programmers to chain rules together. Rule
chaining is good for modularization, error handling, preprocessing, and
abstraction as we’ll show in the following sections.

Automatically Raising Events
Sometimes, it’s useful to explicitly raise an event to handle responses from
an action1. For example, when you use http:post() as an action, you
might want to respond to status codes indicating an error. Explicit events
can be used to cause another rule to handle that response.
While we can simply use the raise statement in the postlude as we just
discussed, this happens often enough for certain actions that they support
shorthand for raising explicit events from the action.

Certain actions automatically raise events using the optional autoraise
parameter2. The autoraise parameter is given with a string as its value.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 4

When the explicit event is automatically raised, one of the event
parameters will be label and it will have the value of the autoraise
string.

Each action defines its own event domain and type. For the
http:post() action the event that is raised will have event domain
http and event type of post. Similarly, each action will include relevant
data from the action. The response values given above are sent as event
parameters and can thus be checked as part of the event selection. The
http:post() action includes response information from the POST.

The following simple example shows a rule that has an http:post()
action with an event autoraise:

rule r1 is active {

 select when pageview "/archives/(\d+)/" setting(year)

 http:post("http://www.example.com/go")

 with params = {"answer": "x"} and

 autoraise = "ex";

}

This is roughly equivalent to the following rule:

rule r1 is active {

 select when pageview "/archives/(\d+)/" setting(year)

 http:post("http://www.example.com/go") setting (resp)

 with params = {"answer": "x};

 always {

 raise explicit event post with resp

 }

}

The only difference is that the autoraise would create an event with
the event domain http while the raise statement would create an event
with the event type explicit.

Assuming we automatically raised an event in the first rule shown above,
we could chain additional rules for subsequent processing of the response.
The following two rules check the status code of the response and present
a notification of the result:

rule r2 is active {

 select when http post label re#ex# status_code re#(2\d\d)#

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 5

 setting (status)

 notify("Status", "Success! The status is " + status);

}

rule r3 is active {

 select when http post label re#ex# status_code re#([45]\d\d)#

 setting (status)

 fired {

 log <<Error: #{status}: #{event:attr(“status_line”)}>>

 last;

 }

}

The second rule fires when the status code in the response indicates an
error, logs the error, and uses the last control statement in the postlude
to stop subsequent processing of rules in the ruleset.
We can also process responses based on other event attributes like the
content type. This example rule shows the content of the response if its
content type is “text.”

rule r4 is active {

 select when http post label re#ex#

 if(event:attr("content_type") like "^text/") then

 notify("Page says...", event:attr("content"));

}

Rule chaining from an autoraise on an http:post() action
provides a convenient, event-driven way of dealing with the results of an
action.

The Explicit Event Action
The Web endpoint supports a raise_event() action that causes the
runtime to raise an event. The raise_event() action causes control to
be passed back to the rules engine from the Web endpoint for further
processing3.
The raise_event() action takes a string argument that declares the
event name and two optional parameters: app_id and parameters.
The app_id identifies the ruleset for which the event will be raised. If

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 6

the app_id is missing, the event is raised to the current ruleset.
Parameters is a map of name value pairs.

raise_event(<event_type>)

 with app_id = <rid> and

 parameters = {“name0”: value0,

 ...

 “namen”: valuen

 };

We can see how this works with an example. Suppose ruleset A has the
following rule:

rule Raise_Event_Action {

 select when pageview ".*"

 {

 notify("Kynetx Event Walkabout",

 "Raise_Event_To_Remote_Ruleset");

 raise_event("event_remote_ruleset")

 with app_id = “B”;

 }

}

And ruleset B contains the following code:

rule Catch_Remote_Event {

 select when web event_remote_ruleset

 notify("Catch_Remote_Event",

 “Received from remote Ruleset!")

}

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 7

When Raise_Event_Action is selected, the notification

boxes shown in
Figure 2 will show up in the user’s browser.

Figure 2. Simple raise_event() action interplay
We can make this simple example more interesting by making ruleset B
callback to the ruleset that raises the event it processes. First, add the
following rule to ruleset A:

rule Catch_Event_Callback {

 select when web event_callback

 notify("Catch_Event_Callback",

 "Received Callback Event!")

}

We also add some parameters to the raise_event() action in the
Raise_Event_Action rule in ruleset A:

rule Raise_Event_Action {

 select when pageview ".*"

 {

 notify("Kynetx Event Walkabout",

 "Raise_Event_To_Remote_Ruleset");

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 8

 raise_event("event_remote_ruleset")

 with app_id = “B”

 and parameters = {

 "callback_rid" : “A”,

 "callback_evt" : "event_callback"

 }

 }

}

Now we change the rule in ruleset B to look for and process the callback:

rule Catch_Remote_Event {

 select when web event_remote_ruleset

 pre {

 callback_rid = event:attr("callback_rid");

 callback_evt = event:attr("callback_evt");

 }

 {

 notify("Catch_Remote_Callback",

 "Received from remote Ruleset!");

 notify("Now Raise Callback",

 "rid: #{callback_rid} name: #{callback_evt});

 raise_event(event_callback)

 with app_id = callback_rid;

 }

}

Note that Catch_Remote_Event uses the event type and
ruleset ID that are set in Raise_Event_Action to

determine which event to raise and specify the ruleset
that will process it. The Catch_Event_Callback rule we

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 9

added to ruleset A catches the callback causing the

notification boxes in
Figure 3 to appear.

Figure 3. Explicit event action with callback

Explicit Events as Rule Abstractions

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 10

In Chapter 7, we created a ruleset that greeted people by name if an entity
variable with their name was present. Otherwise, the ruleset placed a form
on a page asking for their name and then responded by showing the name
submitted in place of the form. Recall that the rule that responded to the
submit event looked like this:

rule respond_submit {

 select when web submit "#my_form"

 pre {

 name = event:attr("first")+“ “+event:attr("last")};

 }

 replace_inner("#my_div", "Hello #{name}");

 fired {

 mark ent:name with name;

 }

 }

The rule that used the data and replaced the form with the name looked
like this:

rule replace_with_name {

 select when web pageview “.*”

 pre {

 name = current ent:name;

 }

 replace_inner("#my_div", "Hello #{name}");

}

The problem with this design is that we’re using replace_inner() in
two different places to paint the greeting on the page. Experienced
programmers try to avoid doing the same thing in two places because it
leads to maintenance problems. For example, if we change the greeting to
“Howdy #{name}!” we have to remember to change it in two places.

The answer to problems like this is almost always some kind of
abstraction. We saw one possible solution, changing the eventex of the
second rule, in Chapter 7. Since Chapter 7, we’ve learned about user-
defined actions, which is another important kind of abstraction in KRL. So
we could define an action called send_greeting() that abstracts the
greeting like so:

send_greating = defaction(name) {

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 11

 replace_inner("#my_div", "Hello #{name}")

 }

Replacing the action in both rules with send_greeting() would
abstract away the details of the greeting and put them in one place. Now
we have one place to change the greeting, but we are still taking the same
action in two places.

Another way to deal with this problem is to use an explicit event to chain
the rules, letting just one rule send the greeting. The first rule would now
look like this:

rule respond_submit {

 select when web submit "#my_form"

 pre {

 name = event:attr("first")+“ “+event:attr("last")};

 }

 always {

 mark ent:name with name;

 raise explicit event send_greeting

 }

 }

The only purpose of this rule is to record the response to the Web form
submission.
The second rule is changed to select when there is an appropriate
pageview event or an explicit event of the right type:

rule replace_with_name {

 select when web pageview “.*” or explicit send_greeting

 pre {

 name = current ent:name;

 }

 replace_inner("#my_div", "Hello #{name}");

}

With this change we have separated the functionality of each rule so that
each does one thing. The first rule stores the value of the submission. The
second rule sends the greeting. This creates a clean separation of concerns
among rules in the ruleset. The rules create the desired functionality
accretively. This is a key design goal in rule-based programming.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 12

Explicit Events for Error Handling
Now that we have an understanding of explicit events in KRL, we’re
prepared to explore the way that KRL provides for error handling. Events
are a natural way to handle errors.

Raising Errors
KRE will raise errors for various system level errors that happen during
the execution of a KRL ruleset. For example, KRL will raise an error
when a rule attempts to take an undefined action or for a type mismatch on
an operator (e.g. applying the length() operator to an integer)4.

When KRE raises an error event it uses the event domain system and the
event type error. The following event attributes are attached to the
event:

• level—the level of the event: error, warn, info, or debug.
Processing continues for all levels except error where execution
is terminated.

• msg—a string giving details about the error

• rid—the ruleset ID of the offending ruleset

• rule_name—the name of the offending rule

• genus—a token from the top level of the event taxonomy
described below indicating the first level classification of the error.

• species—a token from the second level of the event taxonomy
indicating the classification of the error within the genus

In addition to system errors, KRL programs can also raise errors explicitly
in the rule postlude. The syntax of an explicit error statement is:

error <level> <expr>

In this statement <level> is one of error, warn, info or debug
and <expr> is any valid KRL expression that results in a string (or
something that can be cast as a string such as a number).
The following example would raise an event with domain system and
type error with level info and a message with the value of a variable
named query if the rule fired:

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 13

fired {

 error info "query:"+query

}

The following would only raise the event if the query variable is empty:

fired {

 error info "Empty query" if(query like "^$")

}

Explicit errors set the rid and rule_name attributes from the current
ruleset ID and rule name. The genus is set to “user.”

Handling Errors
Handling errors is as easy as creating a rule with the right select
statement. For example, the following rule will use the send_error()
action from a ErrorStack module to record an error using the ErrorStack
service:

rule process_error {

 select when system error

 pre{

 genus = event:attr("genus");

 species = event:attr("species");

 }

 es:send_error("(#{genus}:#{species}) " + event:param("msg"))

 with rule_name = event:param("rule_name")

 and rid = event:param("rid");

}

Like any other event, if an error event is raised and no rule is selected for
it, nothing happens.
Because developers will often want to process all errors from several
rulesets in a consistent way, KRL provides a way of routing error events
from one ruleset to another. In the meta section of a ruleset, developers
can declare another ruleset that is the designated error handler.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 14

For example, if the preceding process_error rule were defined inside
ruleset a16x88, then the following declaration would route error events
from the current ruleset to a16x88 for processing:

meta {

 errors to a16x88

}

Raising events for errors and then handling them with rulesets gives
developers a great deal of flexibility in dealing with exceptional situations
in their code.

Events and Loose Coupling
One of the dangers of explicit events is that we can use explicit events to
introduce a form of tightly coupled “rule calling” in our rulesets. The
example with rule chaining in the preceding section is a good example.
The respond_submit rule is not really raising a general-purpose event
of broad interest, but rather a narrowly focused event that is designed for a
single purpose: forcing the replace_with_name rule to fire.

Rule chaining as we introduce in the last section isn’t likely to cause many
problems in designing a KRL program, but you should be aware that
creating lots of narrowly focused, specific events as a way of explicitly
“calling” certain rules runs the danger of introducing tight coupling into
your applications. As we’ll see in coming chapters, broad-interest events
can lead to new opportunities to expand the application easily later on.

Remember that the purpose of raising an event is to send a notification,
not call a rule. Even the event name we chose, send_greeting, belies
our intention of making a request, rather than making a notification. In
fact, if you find yourself thinking about “calling” rules then you’re
probably doing it wrong.
Instead, suppose the raise statement had read instead:

raise explicit event form_results_posted

This would, more readily, lead to thinking that allows multiple rules to
listen for and respond to the event. We might, for example, add a rule that
uses the results for a database lookup once they’re posted. With an event
named send_greeting, we’re less likely to see that possibility since
we view it as a request to do a certain thing.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 15

Event Intermediaries
One of the key ideas of distributed systems is using intermediaries to
filter, augment, route, and process data in between its origin and ultimate
destination. Intermediaries can reduce the volume of data that the
processor handles as well as improving its quality. Intermediaries make
use of the age-old computer idea: that a level of indirection can cure many
ills. Intermediaries go by different names in different systems:
middleware, routers, proxies, gateways, and so on.

Figure 4. Event intermediaries sit between the endpoint
and the rules that process the events

As shown in

Figure 4, event intermediaries sit in between the endpoint and the rules
that ultimately service them. They provide an improved stream of events
for the rules and make their implementation simpler by pre-processing the
events.
The general idea behind all event intermediaries is event synthesis:
creating new, meaningful events from the originals. Synthesized events
appear to be simple events, but are the result of a planned computational

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 16

process that used complex streams of events as input, processed them in
some way, and creates a new event that contains the relevant data from the
originals.
In KRL, event intermediaries are rules. Intermediary rules are just like
normal KRL rules. They can be in the same ruleset as the other rules in an
application or kept separate. One thing that most event intermediary rules
have in common is that they take no action. The rule consists of an event
expression, some data manipulation in the prelude, and a postlude that
raises the new event.
The next section will explore some common intermediary patterns.

Event Intermediary Patterns
Intermediaries can take many forms, so we will explore them by looking
at some common intermediary patterns.

Event Logging
One of the simplest intermediary patterns is the event logging pattern. The
intermediary rule looks for the expected event scenario, calls a logging
statement (either using the built-in log command in KRL or by making an
HTTP post) and then passes the event on using an explicit event.

The following rule illustrates this by using http:post() to create a
log:

rule logger_rule is active {

 select when phone outboundconnected

 http:post("http://example.com/mylogger.cgi") with

 with number = event:attr("phonenumber")

 always {

 raise explicit event outboundconnected with

 phonenumnber = event:attr("phonenumber") and

 time = event:attr("time");

 }

}

rule use_phone {

 select when explicit outboundconnected

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 17

 ...

}

In this example, the rule is logging the event and some data from it before
passing the event on as an explicit event. Event logging might be used for
debugging, billing, ruleset analytics, and so on.

Abstract Event Expressions
Because of the nature of rule languages, you may often write several rules
that have the same eventex. This goes against the grain of programmers of
traditional programming languages where repeating yourself is not only
wasteful but leads to code maintenance problems.
The right response is to abstract the portions of those multiple rules that
are repetitive and that are apt to be changed frequently. We’ve seen how
functions, user-defined actions, and modules can help with that. But none
of these can help with a repeated complex eventex. Explicit events solve
that problem. In addition to maintainability, using explicit events to
abstract a complex eventex by giving it a name can facilitate program
readability

In the following example, we name a complex eventex. The first rule
contains the complex eventex and names it called_first:

rule called_first is active {

 select when phone outboundconnected

 before email received to re#@apple.com#

 always {

 raise explicit event called_first

 with msg = event:param("msg");

 }

}

rule use_called_first_1 is active {

 select when explicit called_first

 ...

}

rule use_called_first_2 is active {

 select when explicit called_first

 ...

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 18

}

Notice that the first rule raises an explicit event with the name
called_first whenever it sees a particular event pattern. Two later
rules use the called_first event. If the complex event expression is
changed or updated the two rules will both respond appropriately. When
the event expression is used in this manner, we call called_first an
abstract or named event expression.

Event Preprocessing
Sometimes event parameters need to be preprocessed before they are used.
Based on the results of the preprocessing, you may want to do different
things. Preprocessing is a way of enriching the event by using the event
parameters in some way; for example, looking up relevant data from
online data sources and then sending along the results.
Preprocessing is an important form of event abstraction because when we
enrich an event or preprocess the event parameters we avoid doing the
same calculations multiple times in other rules.

The following rule pre-processes an email event to look up data from an
online data source, making the data in the message body more relevant:

rule pinentered is active {

 select when email received

 pre {

 msg = event:attr("msg");

 from = event:attr("from");

 item = datasource:pds({"key":from});

 relevant_data = msg.query("li[type=#{item}]");

 }

 always {

 raise explicit event mail_received with

 from = event:attr("from") and

 to = event:attr("to") and

 msg = relevant_data

 }

}

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 19

In this example the message from an email that’s been received is
preprocessed using the query operator to retrieve just those portions of the
message that are HTML elements with an attribute named type
equal to a value that is retrieved from a data source named pds using
“From” address of the email.

Often it’s helpful to perform a complex mapping step once. Using explicit
events we can put the preprocessing in a single place where it can be more
easily maintained and tested.

Event Stream Splitting
Related to the idea of event preprocessing is the notion of event ‘stream
splitting’. The previous example shows how to perform event parameter
preprocessing. We can use the event parameters to split the event stream
and send it in two different directions. Often preprocessing will be done in
support of splitting the event stream.

The following rule preprocesses the event data and then uses a rule
condition to raise one of two possible explicit events depending on the
result of the condition:

rule pinentered is active {

 select when webhook pinentered

 pre {

 pinattempt = event:param("Digits");

 phone = datasource:pds({"key":"phone"});

 pin = phone.pick("$..value.pin");

 }

 if pinattempt == pin then

 noop();

 fired {

 raise explicit event correct_pin

 } else {

 raise explicit event bad_pin

 }

}

In this example the data in the event attribute Digits is compared with
data retrieved from another data source (datasource:pds). If they’re

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 20

equal, the rule raises the explicit event correct_pin, otherwise the rule
raises the explicit event bad_pin. subsequent rules continues processing
as necessary. In this case none of the original event’s data is passed on
with the new events, but that need not be the case.

App Controller Ruleset
Complex apps will often be based on more than one ruleset. We’ve built
some that use a dozen or so and I expect to see apps that use many more
than that. One of the problems when building complex applications that
comprise multiple rulesets, is keeping track of the control points in the
app—which events are causing which behavior. Developers often want a
single place in the code where they manage control flow.
Using the patterns outlined above, you can create a controller ruleset that
is the main entry point for the app and controls the rules that get executed
in other rulesets. Here are a few of the advantages of using a controller
ruleset in your app:

• routing - Each complex event pattern that the app responds to is
represented in the controller ruleset. Each of these event patterns
raises an explicit event to which the other rules in the app respond
(event abstraction).

• authentication – When you have an app that needs to be
authenticated, you typically will also need a single place to control
the authentication. An event controller solves this problem by
being the one point of control and thus serving as the place where
authentication can be controlled as well.

• normalization - preprocessing event parameters in the controller
app provides a normalized version of data and can serve to insulate
the rest of the app from changes in outside event sources and
endpoints.

Complex Event Scenarios
In Chapter 3 we explored KRL event expressions and the multitude of
scenarios that can be described with them. Because eventexs are roughly
equivalent in computing power to regular expressions, there will always
be scenarios that are too complex to express using eventexs alone. Explicit
events allow rules to be chained together to create scenario detectors that
are as complex as they need to be.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 21

The answer to this problem is to create an intermediate rule that
implements a recognition engine for the scenario. To understand this,
consider this eventex example that we introduced in Chapter 3. The
eventex is designed to select when an RSS feed contains a story that:
includes a stock ticker symbol, and the price of that same stock goes up by
more than 2% within 10 minutes:

select when rss item content re#Stock Symbol: (\w+)#

 setting (symbol)

 before stocks price_rise ticker eq symbol && percent > 2

 within 10 minutes

Suppose however that we want to be more sophisticated and vary the
percentage gain and the time frame according to the levels shown in
Error! Reference source not found.. There’s no good way to do that
from a single eventex.

Table 1. Urgency levels for stock price rises
Percent Time (min) Level
2 10 Urgent
1.5 30 High
1 60 Medium
0.5 360 Low

We can, however, write rules that abstract the percent gain and time as
shown in the table and raise another event with the result. The first rule
merely captures the timestamp of the stock mention and passes it on:

rule stock_mention {

 select when rss item content #Stock Symbol: (\w+)#

 setting (sym)

 always {

 raise explicit event “stock_rise” with

 rise_timestamp = event:attr(“timestamp”) and

 symbol = sym;

}

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 22

The second rule does all the work, calculating the elapsed time and then
setting the urgency according to Error! Reference source not found..
The result is an explicit event that has parameters for the relevant
information. Other rules can then key off this explicit event.

rule stock_rise {

 select when explicit stock_rise symbol re#.*# setting(symbol)

 before stocks price_rise ticker eq symbol && percent > 0.5

 within 360 minutes

 pre {

 elapsed = time:diff(event:attr(“rise_timestamp”),

 time:now(), ”minutes”);

 percent = event:param(“percent”);

 urgency = (elapsed < 10 && percent > 2) => “urgent” |

 (elapsed < 30 && percent > 1.5) => “high” |

 (elapsed < 60 && percent > 1) => “medium” |

 “low”;

 }

 always {

 raise explicit event stock_rise with

 symbol = symbol and

 percent = percent and

 urgency = urgency and

 elapsed = elapsed

 }

}

Together these two rules serve to create a detector for a complex event
scenario that is difficult, if not impossible, to express in a single eventex.

Explicit Events
Along with functions, user-defined actions, and parameterized modules,
explicit events represent one of the key abstraction mechanisms in KRL.
Explicit events allow rule chaining and event synthesis, both a key to
abstraction.
Explicit events open up the use of event intermediaries in KRL and
significantly expand the viability of complex apps built from multiple

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 23

rulesets. Explicit intermediary rulesets like an app controller greatly
reduce the cognitive complexity of large applications.

Endnotes

1 This is different from the raise_event() action that we’ll discuss in
the next section.
2 Currently only the post action the http module supports
autoraise.
3 While only the Web endpoint currently supports the raise_event()
action, future endpoints in other domains will also support it since it
provides important control flow.
4 For a complete list of the error types raised by the system, see the KRL
documentation.

