

Chapter 3. Event Expressions: Filtering the
Event Stream
As we discussed in Chapter 1, the Live Web is uses a data model that is
the dual of the data model that has prevailed on the static Web. The static
Web is built around interactive Web sites that leverage pools of static data
held in databases. Interactive Web sites are built with languages like PHP
and Ruby on Rails that are designed for taking user interaction and
formulating SQL queries against databases. The static Web works by
making dynamic queries against static data. In contrast, the Live Web is
based on static queries against dynamic data.

Streams of real-time data are becoming more and more common online.
Years ago, such data streams were just a trickle, but the advent of
technologies like RSS and Atom as well as the appearance of services like
Twitter and Facebook has turned this trickle into a raging torrent. And this
is just the beginning.
The only way that we can hope to make use of all this data is if we can
filter it and automate our responses to it as much as possible. As we’ll
discuss in detail in Chapter 4, the task is greater than mere filtering, the
task is correlating these events contextually. Correlating events provides
power well beyond merely using filters to tame the data torrent.

This chapter introduces in detail the pattern language, called “event
expressions1,” that we will use to match against streams of events. Event
expressions are an important way that we match events with context.
Event expressions are the language we use to write static queries for the
dynamic data of the Live Web. Together with language structures we’ll
introduce later, event expressions provide SQL-like functionality for
dynamic streams of data.

Patterns and Filtering

1 While the details of event expressions can be quite technical, I hope that non-technical
readers will come away from this chapter with an appreciation for the kinds of patterns
that can be matched and the power of using a pattern language against streams of real-
time data.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 2

When I was first introduced to the UNIX operating system in 1986 one of
the most interesting and powerful commands was something called grep2.
Grep is used to find all the lines in a file that match a user-supplied
pattern. Consequently, grep is very useful for finding specific patterns of
strings in files. Along with file globbing (the ability in the UNIX
command line to apply a command to files that match a pattern called a
“file glob”), grep allows large numbers of files to be searched for complex
string patterns in a matter of seconds. Even today, I use grep almost daily.

Figure 1. Using grep to select strings from a group of
files that match the pattern “foo”

The simplest pattern is an exact match. The following command prints out
all of the lines in the file named file.txt that contain the string “foo:”

grep foo file.txt

As shown in

Figure 1, this would match any sequence of characters that contain the
subset “foo.” So, the string “food” would match, as would “buffoon.”

Things get more interesting when we supply more complex patterns.
Patterns in grep can be full-on regular expressions, or regexs. This makes
grep a very powerful tool for finding specific items. Here are a few
examples of regular expressions and what they would match:

2 For a history of grep, see the Wikipedia article: http://en.wikipedia.org/wiki/Grep

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 3

• \bfoo – strings that contain words starting with “foo.” This
pattern would match “food” and “fool” but not “buffoon.”

• fo+ – strings that contain a character sequence that starts with the
character “f” that is followed by one or more occurrences of the
character “o.” This pattern would match “food” and “fool” but not
“baffled.”

• foo[^d] – strings that contain the sequence “foo” where it is not
followed by “d.” This pattern would match “buffoon” but not
“food.”

• $\d+\.\d\d – strings that contains a dollar sign followed by any
positive number of digits followed by a decimal point, followed by
exactly 2 digits. This pattern would match “$15.59” and “$0.00”
but not “+5.44” or “$5.666.”

By using patterns we can filter large amounts of data while being very
specific about what we want to find. Pattern languages, like regular
expressions, provide a convenient, succinct, and unambiguous way to
express complex ideas. Writing a stand-alone program to find patterns in
strings that look like currency amounts ($d+\.\d\d) isn’t rocket
science, but I don’t want to do it every time I need to find something in a
file. With regular expressions, I express the pattern declaratively and
another program translates the pattern into a program for finding the
pattern.

A Pattern Language for Events
Similarly, writing a program to look at streams of events and pick out
specific patterns isn’t hard, but it gets tiresome when you want to do it
over and over again. In the same way that we use regular expressions to
find patterns in strings, we can use a declarative language to express
patterns in event streams and then automatically translate those patterns
into the programs that search for them.
We will call patterns in this language “event expressions” or “eventexs.”
As we’ll see in later chapters, eventexs are used in KRL for selecting rules
when a particular event pattern is present in the event stream. The
processing system for KRL also uses eventexs to determine what events
are salient for a particular ruleset.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 4

An effective event expression language will have the following
properties3:

• Power of expression
• Notational simplicity
• Precise semantics
• Scalable pattern matching

There is a trade-off between some of these properties. We can easily
imagine powerful event expression languages that are not scalable or
simple to write. The event expressions we describe in this chapter achieve
the goal of being quite powerful while retaining their implementability,
scalability, and simplicity.

Eventexs have the following benefits over natural-language descriptions
and standalone programs for recognizing the same pattern:

• Eventexs save time. Eventexs are succinct. Writing an eventex is
shorter than writing the equivalent program in a general purpose
programming language, reducing tedium and mistakes at the same
time.

• Eventexs provide a common foundation for communication.
Eventexs are unambiguous. Programmers describing interesting
patterns can be sure they are expressing the same concept when
they use the same eventex. Similarly, programmers can be surer
that the program they are writing means what they think it does.

• Event processors can translate eventexs into programs for
programmatically recognizing specified patterns.

• Event generators can use eventexs to determine which events are
of interest to the event processor, thereby making the event
network more efficient.

We will begin by discussing the patterns that we can use to select
individual events and then move on to more complex event expressions
that look for patterns over streams of events4.

Finding Individual Events

3 David Luckham, The Power of Events. Addison-Wesley, 2002.
4 Appendix D contains a more formal description of event expressions used in this book
including the syntax and semantics of the types of eventexs we will explore in this
chapter informally.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 5

As we saw in Chapter 2, events have structure. They have a name and
attributes that have values. Two of the attributes are required: a globally
unique ID and a timestamp. In addition, we will allow events to include an
optional domain that can be used to group events together. The particular
way that this structure is expressed in event instances isn’t important now
so for the time being we’ll ignore it5. Instead we will concentrate on
writing patterns that can match the components of this structure. We use
primitive event expressions for recognizing the occurrence of individual
events.

Exact Matches
The simplest pattern for selecting an event from an event stream is just an
event name. The following eventex selects events that have the name
pageview6:

select when pageview

If we wanted to include a domain to ensure we were looking at events in a
specific group, we could do so:

select when web pageview

This would ignore pageview events unless they also included the domain
web.

While grep can be used with complex regular expressions, I suspect that in
more than 90% of cases, people use it for simple, exact matches as we saw
in the first example. In the same way, simple, name-only patterns may not
seem powerful; however, they are among the most frequently used event
expressions because, for much of what we want to do, simply matching
the name is sufficient.

Attribute Matching
When exact matches aren’t enough, the next step in expressive power is
garnered through attribute matching. Eventexs for attribute matching are
formulated in the same way as exact matching eventexs, adding as many

5 Chapter 5 will discuss the specifics of how event generators format and transmit events.
6 The keywords select when denote the beginning of an event expression. We’ll
see how this fits with KRL in Chapter 6.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 6

attribute-regex pairs as needed to specify the precise events that should
match.

The following eventex matches a pageview event and applies a regex to
the event attribute url:

select when pageview url #/archives/\d{4}#

This pattern will match all events in the event stream that contain an
attribute named url that has a value that contains the string
/archives/ following by four digits7. This particular event would
indicate that the user has viewed a web page that has a URL matching the
regex.
We can test more than one attribute by simply including them in the
eventex. Multiple attribute-regex pairs are evaluated. All of them must be
true for the event expressions to match. For example:

select when pageview url #/archives/\d{4}/#

 title #iphone#i

This represents a subset of the events selected by the preceding eventex to
only include those from the archive path that contain the word “iphone” in
the title of the page. The trailing “i” in the regex indicates that case
shouldn’t be taken into consideration in matching the title.

Capturing Values
Regular expressions inside an eventex can be used to capture values and
assign them to a variable for later use. We indicate that we want to capture
a value in a regex by enclosing the part of the pattern we wish to capture
in parentheses. Event expressions can use an optional setting clause to
indicate the variable names for any captured values. Values are assigned to
named variables in the order the captures appear in the regexs.

The following eventex would select the same events as the one in the
preceding example, but also capture the digits of the archive path from the
URL and the value of the word following “iphone” in the title:

7 The regex shown uses the hash character (#) to delimit the regular expression instead of
the more common (and acceptable) slash (/) because the slash is a frequently used
character in URL paths. This removes the need to quote the slash with backslashes:
/\/archives\/\d{4}\//. Using alternate delimiters makes the regex more
readable and thus communicates its meaning more clearly.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 7

select when pageview url #/archives/(\d{4})/#

 title #iphone (\w*)#i

 setting(year, next)

Suppose the actual event is a pageview on the path /archives/2005/
with the page title “Singing the iPhone Blues.” When the given eventex
matches such an event, the variable year will contain the value 2005
and the variable next will contain the value Blues.

As another example, consider the following eventex that sets the variable
user_id from the “from” address in an incoming email message:

select when mail received from #(.*)@windley.com#

 setting(user_id)

The ability to select events not just by name and domain, but also by regex
matches against their individual attributes along with binding part or all of
the matching values to variables, provides a powerful means of selecting
events from the event stream.

When you need to use parentheses for grouping inside a regular
expression but don’t wish to capture the value, you can add “?:” to the
front of the grouping:

select when pageview #/(?:archives|logs)/(\d+)/(\d+)/#

 setting (year,month)

The “?:” inside the first parenthesized expression keeps that match from
being captured so that year and month are still set correctly. If you capture
more values than you have variables in the setting clause, the extra
captured values will be lost

Attribute Expressions
As powerful as regex matching is, there are times when a more freeform
expression is what we need to precisely select the events in which we are
interested. Instead of following the eventex name with a series of attribute-
regex pairs to match attributes, the name can be followed with a single
expression8. If the name and domain match and the expression’s value is

8 Expressions will be formally introduced in Chapter 6 and are described in greater detail
in Appendix E.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 8

true, then the eventex matches. Attribute names can be used as variables in
the expression.

Attribute expressions are introduced to a primitive eventex with the
where keyword. For example, the following two eventexs mean the same
thing:

select when pageview where url.match(#/archives/\d{4}/#)

select when pageview url #/archives/\d{4}/#

But suppose we only wanted to match events when the year in the archive
path of the URL is greater than 2003? We could express that using
regexes, but it gets messy. The following eventex accomplishes that:

select when pageview

 where url.extract(#/archives/(\d{4})/#) > 2003

The extract operator in this expression returns the match in the regex
that is then used in the inequality test.

While only a single attribute expression can be used in a primitive
eventex, we can use boolean operators to test more complex scenarios.
The following eventex not only matches articles after 2003 but also
requires that the title contain the string “Utah.”

select when pageview where

 url.extract(#/archives/(\d{4})/#) > 2003 &&

 title.match(“Utah”)

Attribute expressions provide a powerful and flexible way to match
individual events.

Event Scenarios
Responding to individual events is useful, but event expressions are even
more powerful when used to correlate events contextually. We call a
contextually meaningful, related group of events an event scenario.
Systems that deal with event scenarios are said to do “complex event
processing.”

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 9

For example, consider the simple scenario shown in

Figure 2. As you drive through town your phone notifies you that the
DVD you added to your Amazon wishlist that morning is available and on
sale at the Best Buy you’re passing.
You can’t recognize this scenarios by recognizing an event that says you
added something to wishlist or an event that indicates you’re driving past
Best Buy. To recognize this scenario, you have to recognize the pattern of
a DVD being added to the wishlist before you drive past Best Buy.
Combined together, the two events provide information, automatically,
that you’d otherwise have to synthesize yourself.
Complex event scenarios like this are not unusual. In fact, they make up
the most interesting interactions we might have on the Live Web. We may
be interested in knowing when someone is viewing a particular sequence
of pages on our site or calling our support line after having sent a question
by email. But creating these kinds of interactions is prohibitively
expensive or even impossible using the old client-server model, with its
silos of data. Complex event expressions that describe event scenarios
make them easy to recognize.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 10

Figure 2. Your DVD’s at Best Buy!
Event scenarios provide much of the filtering necessary to make the
potentially overwhelming streams of real-time data and events
manageable. Without eventexs, the most common way to deal with
complex scenarios programmatically is to build ad hoc logic that
recognizes the event scenario and dispatches procedures to handle each
scenario. Most modern Web applications have a chunk of logic for
keeping track of the user’s state in the application and then getting them to
the right functionality.

But we needn’t approach this important task in an ad hoc fashion. As
we’ve seen, eventexs provide a declarative means of recognizing
individual events. Our event expression language allows us to combine
primitive event expressions to form compound event expressions that can
be used to match the patterns of events that are common in complex event
scenarios. By combining primitive events into event scenarios, developers
can create sophisticated applications without the need for them to manage
the state machine that would be necessary to recognize those scenarios.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 11

Compound Events
Compound event expressions allow us to combine primitive events to
form event scenarios. Event expressions provide a robust, precise notation
for expressing complex patterns on event streams. Complex event
expressions are not new; they have been the subject of research in
database trigger languages since the 1990s and have been used since then
in event engines in a variety of disciplines9. What is new is their
application to real-time data streams on the Web.

Event Operators
Event operators combine event expressions into even more complex event
expressions using operators that relate subexpressions to one another. Bear
in mind that we’re not interested in a forensic exercise where we examine
logs of event occurrences. Rather, we apply event patterns to live, real-
time event streams. This colors the semantics slightly.

The following binary event operators are available:
A or B – eventex A matches or the eventex B matches. There is no
expectation of order. If either subexpression matches, then the entire
expression matches.

select when pageview url #bar.html#

 or phone inbound_call from #801\d+#

In this example, the expression would match if the user viewed a page
with the string “bar.html” in its URL or received a phone call from a
number with area code 801.
A and B – eventex A matches and eventex B matches in any order.

select when pageview url #bar.html#

 and pageview url #foo.html#

In this example, the expression would match if the user viewed a page that
contained the string “bar.html” in its URL and viewed another page that
contained the string “foo.html.” There are two events that both have to
occur independently for this match to occur.

9 For a list of papers and other resources related to complex event expressions, see
Appendix B.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 12

A before B – eventex A matches before eventex B matches. Another
way to understand this is that event A appears before event B in the event
stream. The compound event matches when event B occurs. There may be
intervening events between A and B.

select when pageview url #bar.html#

 before phone inbound_call

This eventex would match if the user viewed a page with the right URL
before the inbound_call event is received. Both events have to occur
before this eventex matches.

A then B – eventex A matches then eventex B matches with no
intervening salient events.

select when pageview url #bar.html#

 then phone inbound_call

This eventex would match if the user viewed a page with the right URL
and the next event signals an inbound_call. Both events have to occur
before this eventex matches.
A after B – eventex matches if A occurs after B. This is equivalent to
B before A.

select when pageview url #bar.html#

 after phone inbound_call

This eventex would match if the user viewed a page with the right URL
after the inbound_call event is received. Both events have to occur
before this eventex matches.
A between(B, C) – eventex A matches in between eventex B
matching and eventex C matching. The compound event matches when
event C occurs.

select when pageview url #mid.html#

 between(pageview url #first.html#,

 pageview url #last.html#)

This example eventex would match if the user viewed a page with a URL
that contains the string “mid.html” in between viewing pages that have
URLs that contain the strings “first.html” and “last.html” respectively.
Note that this eventex will match only after the pageview with “last.html”
occurs.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 13

A not between(B, C) – eventex A did not match in between
eventex B matching and eventex C matching. The compound event
matches when event C occurs.

select when pageview url #mid.html#

 not between(pageview url #first.html#,

 pageview url #last.html#)

This example eventex would match if the user did not view a page with a
URL that contains the string “mid.html” in between viewing pages that
have URLs that contain the strings “first.html” and “last.html”
respectively. Note that this eventex will match only after the pageview
with “last.html” occurs.
We don’t capture variables in compound eventexs. Variables can be set
based on regex captures for primitive eventexs as part of the primitive
event.

select when pageview url #mid.html#

 not between(pageview url #(\d+).html# setting(b),

 pageview url #(\d+).html# setting(c))

For simplicity, the preceding examples have used a single primitive
eventex (pageview) but there’s no restriction on using different event
types from different event domains in an eventex. In fact the most
interesting eventexs usually involve more than one event type:

select when inbound_call

 from #(\d{3})\d+# setting(area_code)

 between(pageview url #custserv_page.html#,

 pageview url #homepage.html#)

Of course, compound eventexs can be nested. Parentheses specify order
where precedent is not apparent.

select when pageview url #mid.html#

 between(pageview url #(\d+).html# setting(b),

 pageview url #(\d+).html# setting(c))

 before pageview url #/archives/(\d+)/foo.html# setting (year)

Time

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 14

Time is an important component of many events. There are three ways
that we can use time: as an explicit condition on primitive eventexs, as an
absolute event that is raised at an explicit point in time, and as a relative
comparison of the timestamps on the components of an event expression.

Explicit Time Expressions
As we saw in Chapter 2, events contain a timestamp attribute. We can use
the timestamp attribute in explicit conditions on primitive events. As the
timestamp attribute is a datetime object10, the time module operators can
be used to manipulate the timestamp as part of the attribute expression of a
primitive eventex.
For example, suppose your car raised an event each time it was started.
We could create an eventex that only selects when the car is started before
8am as follows11:

select when car started where

 time:compare(timestamp,time:new(“08:00:00”)) < 0

Absolute Time Events
Absolute time events are similar to cronjobs in the UNIX operating
system. They are not comparisons, but events that are raised at a
particular time. When we create an eventex that contains an absolute time
event, we are setting an alarm that will go off at that point in time. When
we use them in an eventex, the eventex will not match until that alarm
occurs.
Absolute time events are set using the at operator:

at(<datetime>)

This creates an alarm that will raise an event at the given datetime. The
eventex matches at that specified absolute time. The parameter
(<datetime>) is specified using datetime objects from the KRL time
module of the expression language.
We could specify a page view event in between 8am and 5pm12 as
follows:

10 The built-in operator time:new() is used to convert strings into datetime objects.
11 The time:compare() function returns -1 if the first argument is less than the second, 0
if they are equal, and 1 if the first argument is greater than the second.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 15

select when pageview

 between(at(time:new(“08:00:00”)),

 at(time:new(“17:00:00”)))

Note that this eventex doesn’t match when the pageview occurs, but rather
when the alarm occurs at 5pm.
Here are a few other examples along with an explanation of their
semantics:

select when at(time:new(“08:00:00”))

Match at 8am every morning.

select when at(time:new(“Friday, 07:00:00”))

Match at 7am every Friday.

select when at(time:new(“2012 May 15 07:00:00”))

Match at 7am on May 15, 2012.

select when at(time:new({day: 15}))

Match on the 15th of the month, every month.

We can use the before and after operators with at to specify time
delineations.

select when pageview

 after at(time:new(“Jan 15 2011 08:00:00”))

When the date in a datetime string is not fully specified, we disambiguate
it by assuming today. Thus the following eventex matches any pageview
after 8am today:

select when pageview after at(time:new(“08:00:00”))

Relative Event Expressions
Relative event expressions compare the timestamps of the event sub
expressions. The within operator is used:

A <eventop> B within n <period>

12 You might be wondering “8am in what time zone and in reference to what?” The
evaluation is always referenced to the location of user for whom the event was raised.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 16

This eventex matches only if the compound event expression A
<eventop> B happens within the specified period. The <eventop>
can be any of the event operators from the preceding section13. The
<period> can be one of seconds, minutes, hours, days, or
weeks. For example,

select when pageview url #custserv_page.html#

 before pageview url #homepage.html#

 within 3 hours

This eventex would match an event stream where a pageview with a URL
for the customer service page came before the pageview with a URL for
the homepage as long as those two events occurred within 3 hours of each
other.
If the within clause is applied to a nested event, the period tested is
between the first match and the last match of the entire nested eventex. For
example,

select when inbound_call from #^801-\d+#

 before(pageview url #custserv_page.html# and

 pageview url #homepage.html#)

 within 3 hours

This eventex would match an event stream where the pageview with a
URL for the customer service page and the pageview with a URL for the
homepage occurred after a phone call from the “801” area code as long as
the final pageview occurred within 3 hours of the inbound call.

Conditions and Alarms
Be careful not to confuse timestamp conditions with absolute time
eventexs. For example, the following two eventexs are not equivalent:

select when car started where

 time:compare(timestamp,time:new(“08:00:00”)) < 0

select when car started

 before at(time:new(“08:00:00”))

13 Note that the within semantics don’t make sense for the or operator and using it
in that context is not syntactically wrong, but accomplishes nothing.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 17

The first will match as soon as the car is started, so long as the car is
started before 8am. The second will match at 8am if the car was started
anytime prior to 8am that same day.

Variable Arity Event Operators
The compound event operators we used previously were given as infix14,
binary operators. Event expressions also allow variable arity15 event
operators that provide more convenient methods of expressing patterns
over large numbers of events. Using compound operators in this way
follows this pattern:

select when <eventop>(E1,…En)

In the previous example <eventop> is one of or, and, before,
after, or then. Variable arity functions are merely a convenience
since their semantics can be expressed using the binary operators. For
example, the following two select statements are equivalent:

select when and(A, B, C, D, E)

select when A and B and D and C and E

Note that and and or are commutative and associative, so the way that
subexpressions are nested is immaterial and so the parentheses have been
left out of the previous expression. The operators before, after, and
then are neither associative nor commutative, so the nesting of
subexpressions is significant. The following example illustrates the
semantics of a variable arity before statement by showing the equivalent
nested binary operators, properly parenthesized:

select when then(A, B, C, D, E)

select when A then (B then (C then (D then E)))

The same nesting is used for before and after.

14 The term “infix” describes operators that are placed syntactically between their
operands.
15 The term “arity” refers to the number of parameters a function takes. Variable arity
function can take a variable number of parameters.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 18

Group Operators
There are three group operators any, repeat and count.

any(n, E1,…,Em) — matches if any n of eventexs E1 through Em
match. In this eventex, n must be less than or equal to m. When n is not
less than m, any behaves the same as a variable arity and operator
checking for matches of all the subexpressions.

The following example shows how any can be used:

select when any(2, web pageview url #customer_support.htm#,

 phone inbound_call to #801-649-4069#,

 email received subject #\[help\]#)

This eventex would match if any 2 of the three enclosed simple eventexs
matched. The preceding eventex has the same semantics as this compound
eventex:

 select when (web pageview url #customer_support.htm# and

 phone inbound_call to #801-649-4069#)

 or

 (phone inbound_call to #801-649-4069# and

 email received subject #\[help\]#)

 or

 (web pageview url #customer_support.htm# and

 email received subject #\[help\]#)

I think you’ll agree that the first eventex is clearer than the second.

count(n, E) — matches after n of eventex E have matched. Once the
count eventex matches, the counter is reset and the expression begins
looking for n more of eventex E.

Consider the following eventex:

select when count(3, E)

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 19

The arrows on the event stream shown in

Figure 3 where this eventex would match.

Figure 3. Event stream showing matches for count(3,
E)

repeat(n, E) — matches after n of eventex E have matched. Once
the repeat eventex matches, the counter is not reset and the eventex
matches using a sliding window on the event stream, always matching the
last n of the eventex given in the subexpression.

Consider the following eventex:

select when repeat(3, E)

The arrows on the event stream in

Figure 4 show where this eventex would match.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 20

Figure 4. Event stream showing matches for repeat(3,
E)

The repeat operator is not particularly interesting by itself, but is mostly
used in convert with aggregators introduced in the next section.

We can use relative time bounds with group operators as shown in the
following example:

select when any(2, pageview url #customer_support.html#,

 inbound_call to #801-649-4069#,

 email received subject #\[help\]#)

 within 3 minutes

This event expression has the same semantics as the any example given
above except that the matches of the subexpressions must occur within 3
minutes.

To use absolute time bounds, the between operator is used:

select when any(2, pageview url #customer_support.html#,

 inbound_call to #801-649-4069#,

 email received subject #\[help\]#)

 between(at(time:new(“8:00:00”)),

 at(time:new(“17:00:00”)))

This eventex would match when the events matches occurred between
8am and 5pm.

Variable Correlation Between Eventexs
We've seen that the setting clause can be used to capture values in regular
expressions and bind them to variables in primitive events. Once a value is
bound to a variable, it can be used in subsequent subexpressions in the
same eventex16. For example, suppose that you want to see if someone
has viewed the same page twice without having to specify the page. We
don’t care which page they view, as long as the view it twice.

select when pageview url #/archives/(.*)#) setting (a)

16 To be less ambiguous, variables bound in one eventex can be used in enclosing
eventexs. Parentheses can be used to ensure that the nesting of event subexpressions is
what the developer desires.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 21

 before pageview url.match(("#/archives/”+a+”#").as(“regex”))

This eventex takes advantage of the expression language’s type coercion
operator, as, to construct a string using the value from the first eventex and
then turn it into a regex for the second match.

Aggregators
For the count and repeat operators, we sometimes want to aggregate
values from the enclosed subexpression. The following clauses can be
used to accumulate values:
E max(<var>) — accumulate the maximum value of the captured
value in the variable <var>. The following eventex will match using a
sliding window of five withdrawal events and set the variable m to have
the maximum amount:

select when repeat(5, withdrawal amount #$(\d+\.\d\d)#) max(m)

As we saw above, the repeat operator will continue to match for every
withdrawal event after the first five. The variable m will always contain
the maximum value of the last five withdrawal events.

E min(<var>) — accumulate the minimum value of the captured value
in the variable <var>. The following eventex will match five withdrawal
events using a sliding window and set the variable m to have the minimum
amount:

select when repeat(5,withdrawal amount #$(\d+\.\d\d)#) min(m)

E sum(<var>) — accumulate the sum of the captured values in the
variable <var>. The following eventex will match five withdrawal
events and set the variable m to have the sum of the amounts:

select when count(5, withdrawal amount #$(\d+\.\d\d)#) sum(m)

Because we used count rather than repeat, the eventex will sum the
amounts of every five withdrawals, rather than the last five.

E avg(<var>) — accumulate the average of the captured values in the
variable <var>. The following eventex will match five withdrawal
events and set the variable m to have the average of the amounts:

select when repeat(5, withdrawal amount #$(\d+\.\d\d)#) avg(m)

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 22

E push(<var>) — append the captured values to the variable <var>.
The following eventex will match five withdrawal events and set the
variable m an array of the amounts:

select when repeat(5, withdrawal amount #$(\d+\.\d\d)#) push(m)

If the eventex that the aggregator is attached to captures more than one
variable, the first variable captured is used in the aggregator. Only one
aggregator can be used in an event expression.

Eventex Examples
The following examples give a scenario and a sample eventex that might
be used to recognize that scenario. All of these assume the presence of
endpoints that are able to recognize events of interest and are properly
configured.
Large withdrawals—this scenario is fairly common and a feature built
into many banking sites. The eventex selects when there is a withdrawal
event where the parameter amount is over a certain limit.

select when bank withdrawal where amount > 100

Too many withdrawals—we may be interested to know when the number
of withdrawals from an account passes a certain threshold during the
business day:

select when count(4, bank withdrawal)

 between(at(time:new(“08:00:00”)),

 at(time:new(“17:00:00”)))

Too many withdrawals in 24 hours—rather than focusing on the
business day, which might be too specific for a world of ATMs, we can
use a relative time expression to match when there are 4 withdrawals in a
24-hour period:

select when count(4, bank withdrawal) within 24 hours

Too many withdrawals over a limit—we can add a limit to only match a
specific count of withdrawals that are over a threshold ($100 in this case):

select when count(4, bank withdrawal amount > 100) within 24 hours

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 23

Withdrawal after a deposit—a withdrawal following a deposit matches
when the withdrawal amount is greater than the deposit:

 select when bank deposit amount #(\d+)# setting(dep_amt)

 before bank withdrawal where amount > dep_amt

Withdrawal after a deposit with a limit—A withdrawal following a
deposit matches when the withdrawal amount is greater than the deposit or
greater than a threshold:

 select when bank deposit amount #(\d+)# setting(dep_amt)

 before bank withdrawal where amount > dep_amt || amount > 100

Phone call with a followup SMS—we are interested in knowing when a
phone call is received within 1 hour of an SMS being received from the
same number:

select when inbound_call from #(.*)# setting (num)

 after sms_received where from.match(“/#{num}/”.as(“regexp”))

 within 1 hour

Too many phone calls—match when there are more than a threshold
amount of phone calls in a given time period:

select when repeat(5, inbound_call) within 20 minutes

Too many phone calls from one number—match when there are more
than a threshold amount of phone calls from the same number17 in a given
time period:

select when repeat(5, inbound_call from #.*#) push(nums)

 within 20 minutes

Looking at travel sites—match pageview events that appear to be
focusing on travel related sites:

select when any(2, pageview url #orbitz#,
 pageview url #kayak#,
 pageview url #priceline#,
 pageview url #travelocity#,
 pageview url #expedia#)

17 We don’t actually check that the numbers are the same in the eventex, we merely push
them onto an array. A condition in the rule associated with this eventex can check to
ensure they’re the same. See Chapter 6 for more information on rules.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 24

Looking for support—match when the user calls the support number
within 1 day of visiting the support website:

select when inbound_call from app:support_number

 and pageview where url.match(app:support_website)

 within 1 day

Note that this example uses application variables for the support number
and website regular expressions. The use of the and operator means that
either could happen first.

Find news articles that affect stock price—when an RSS feed contains a
story that includes a stock ticker symbol and the price of that same stock
goes up by more than 2% within 10 minutes.

select when rss item content #Stock Symbol: (\w+)#

 setting (symbol)

 before stocks where price_rise ticker eq symbol && percent > 2

 within 10 minutes

Matching Scenarios
The examples from the preceding section show some of the power of
using eventexs to match complex event scenarios. Eventexs make
expressing the desired scenarios succinct and unambiguous.
The use of eventexs allows us to create dynamic queries that can filter the
stream of real-time event data matching only the event scenarios that are
relevant to the task at hand. Being able to look for relevant event patterns
is the first step toward managing and harnessing a deluge of real-time
events. In coming chapters we’ll discover the power of not only matching
event scenarios, but also processing them to achieve the user’s purpose.

