
Lesson 8:
Peer-to-Peer Architectures

Phillip J. Windley, Ph.D.
CS462 – Large-Scale Distributed Systems

Fallacies of Distributed
Computing00

Lesson 08: Peer to Peer Architectures

The CAP Theorem01
Swarm File Sharing02

Distributed Discovery03
Conclusion04

Contents

3CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Introduction

Peer-to-peer (P2P) architectures are networked
systems where each node in the network is on
equal footing with every other node.

The largest and most successful P2P network is
the Internet itself. Every machine connected to
the network gets an IP address and can interact
with any other machine on the Internet so long
as it knows that machine’s IP address.
The Web is not a P2P architecture because it
sees some machines as clients and some as
servers. They are not peers.

Special purpose P2P systems are frequently
built on top of the Internet. Such a network is
called an overlay network.

Designing a functional P2P system can be
difficult because humans think in stories—
linearly. And we love centralized systems
because they’re easy to understand.
This lesson introduces concepts and algorithms
for building practical decentralized peer-to-peer
systems.

Lesson 08: Peer-to-Peer Architectures

4CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Lesson Objectives

After completing this lesson, you should be able to:

1. Explain the eight fallacies of distributed computing
2. Give examples of the CAP theorem and explain tradeoffs

3. Show how distributed file sharing works and relate it to consensus
4. Describe distributed discovery and show how a distributed hash table works

Lesson 08: Peer-to-Peer Architectures

5CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Reading
Read the following:

Ø Fallacies of Distributed Computing Explained (PDF) by Arnon Rotem-Gal-Oz
(http://www.rgoarchitects.com/Files/fallacies.pdf)

Ø A plain English introduction to CAP Theorem by Kaushik Sathupadi (http://ksat.me/a-plain-english-
introduction-to-cap-theorem/)

Ø Perspectives on the CAP Theorem (PDF) by Seth Gilbert and Nancy A. Lynch
(http://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf)

Ø The Scalability of Swarming Peer-to-Peer Content Delivery by Daniel Stutzbach, Daniel Zappala, and
Reza Rejaie
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.1599&rep=rep1&type=pdf)

Ø Bittorrent, how it works? (https://www.youtube.com/watch?v=6PWUCFmOQwQ)

Ø Chord: a scalable peer-to-peer lookup protocol for internet applications (PDF) by Ion Stoica, et. al. (in
LMS)

Ø Intro to Distributed Hash Tables by real (https://www.freedomlayer.org/intro-to-distributed-hash-
tables-dhts.html)

Lesson 08: Peer-to-Peer Architectures

http://www.rgoarchitects.com/Files/fallacies.pdf)
http://ksat.me/a-plain-english-introduction-to-cap-theorem/
http://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.1599&rep=rep1&type=pdf
https://www.youtube.com/watch?v=6PWUCFmOQwQ
https://www.freedomlayer.org/intro-to-distributed-hash-tables-dhts.html

6CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Additional Resources

Additional Resources:
Ø Availability and Consistency by Werner Vogels (http://www.infoq.com/presentations/availability-

consistency)

Ø Eventually Consistent – Revisited by Werner Vogels
(http://www.allthingsdistributed.com/2008/12/eventually_consistent.html)

Ø The Short History of Napster 1.0 by Alex Winter (http://www.wired.com/2013/04/napster/)

Lesson 08: Peer-to-Peer Architectures

http://www.infoq.com/presentations/availability-consistency
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.wired.com/2013/04/napster/

Developers often reason
poorly about distributed
systems because of
misconceptions they hold

Fallacies of
Distributed
Computing

8CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Some Reasons Distributed Systems Are
Hard to Get Right

Developers frequently run into problems when they scale up a
prototype. One key difference between prototypes and production
code is taking into account fallacies.

While the number of mistaken assumptions one can make is large,
a few are so widespread that they rise to the level of being a
common fallacy.
By understanding these fallacies and the arguments that lead us to
believe them, we can avoid the problems they cause in our
architectures. Or, at least, more accurately pinpoint the root cause
of a failure after the fact.

Fallacies are false
beliefs based on
unsound arguments.
Fallacies are often
unconscious.

Lesson 08: Peer-to-Peer Architectures

9CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

The Eight Fallacies of
Distributed Computing

In 1994, Peter Deutsch
published a list of seven
poor assumptions that
distributed system
architects often make. In
1997, James Gosling
added an eighth.

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.

4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.

7. Transport cost is zero.
8. The network is homogeneous.

Lesson 08: Peer-to-Peer Architectures

10CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

The Network Is Reliable

We’ve all heard that the Internet routes around problems.
And generally speaking, that statement is true—until it
isn’t.

While the Internet in general is quite reliable, that doesn’t mean
that Comcast built redundant fiber links to your neighborhood or
the data center engineers didn’t make a mistake when they
configured their routers.

Networks fail all the time. Distributed systems have to be designed
to be mostly (and sometimes just occasionally) connected and still
function.

Lesson 08: Peer-to-Peer Architectures

11CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Latency Is Zero

Latency in distributed systems is the amount of time it
takes to get a response to a message sent to a remote
process.

Latency can be caused by propagation delay, network congestion,
data serialization, data transmission, and application processing
and delay.

Network delay is usually so small that it disappears for humans,
but to machines, it’s a very long time.
For example, hard disk access times are measured in milliseconds
while RAM access times are measured in microseconds or even
nanoseconds.
Sending a packet over a network from the US to Europe can take
10’s of microseconds. So, to a program, communicating with
remote machines appears very slow.

Lesson 08: Peer-to-Peer Architectures

A bundle of nanoseconds

12CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Bandwidth Is Infinite

Bandwidth is the carrying capacity of the network. In
distributed systems, you can think of it as the total
throughput of the remote process.

Bandwidth is an emergent feature of the architectural choices and
can often be increased with additional time and money. But it is
not infinite and it is certainly not free.

A scalable architecture has the ability to increase its throughput to
meet the needs of it’s clients. Designing for scalability is a tough
problem that good distributed system architects keep top of mind.

Lesson 08: Peer-to-Peer Architectures

13CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

The Network Is Secure

The only completely secure system is one that’s not
connected to the Internet.

Of course, everyone knows this. But many systems are developed
with security as a second order concern. Sometimes the system is
a prototype that grew up. And pressure to deliver always gets in the
way.
Distributed systems are especially vulnerable because, by
definition, they’re using networks to communicate. Network
security is a complicated subject, but many security problems can
be mitigated by well-known design principles.

Lesson 08: Peer-to-Peer Architectures

14CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Topology Doesn’t Change

Network topology can change when new network nodes
are added or a node is deleted. Topology can also change
because of spanning tree changes in the network itself,
making previously close processes appear more distant.

When the topology changes, assumptions about where remote
processes are and how to reach them can change as well.
Configurations that rely on fixed numbers of components, hand-
built configuration files (instead of discovery), or poor expectations
about latency can fail when faced with a topology change.

Lesson 08: Peer-to-Peer Architectures

15CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

There Is One Administrator

Distributed systems cannot be coordinated by fiat.

Most distributed systems make use of resources that are
controlled by multiple administrators. For a decentralized system
where the remote processes are under the control of separate
entities, the is no central entity who can force compliance or
cooperation.
Distributed system designers have to take system ownership and
administration into account when considering how their system will
deploy, how to handle failures, user accounts and provisioning, and
a host of other concerns.

Lesson 08: Peer-to-Peer Architectures

16CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Transport Cost Is Zero

Networks cost money. Bandwidth costs money. If your
messages are small, the cost may be insignificant, but
many payloads are not.

As we saw in Lesson 01, overcoming latency problems is even
more expensive because you’re in a race with physics. When
latency matters, reducing it can cost millions of dollars.

Underestimating transport costs can turn a project or business into
a good idea that failed when funding becomes unfeasible.

Lesson 08: Peer-to-Peer Architectures

17CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

The Network Is Homogenous

Distributed systems run on networks with different
physical layers, different topologies, and different
protocols.

Moreover, distributed applications may deal with different APIs that
use differing serialization formats, authentication protocols, and
design philosophies.

Successful distributed applications flexibly handle these
differences. Successful distributed system architects use dynamic
applications and discovery rather than static configuration in their
design wherever possible.

Lesson 08: Peer-to-Peer Architectures

Distributed system
architects are frequently
forced to make trade-offs
between consistency,
availability, and network
partitioning

The CAP
Theorem

19CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

The Cap Theorem

Eric Brewer originally formulated what has come to be
known as the CAP Theorem in 1998. The CAP Theorem
states that it is impossible for a distributed system to
simultaneously guarantee:

Ø Consistency—all nodes see the same data at the same time
Ø Availability—every request received by a non-failing node in the

system must result in a response

Ø Partition tolerance—the system continues to operate despite
arbitrary partitioning due to network failures

Let’s explore these further.

Lesson 08: Peer-to-Peer Architectures

20CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

One way to get consistency is to make sure everything is
looking at the same data.

The figure shows two algorithms, A and B, in the same process and
sharing a database. They see the same data. When A writes to the
database, B sees the new value.
As we saw in Lesson 07, this configuration can only achieve
consistency by carefully controlling when A and B access the data.
B may not always be allowed to read A’s changes due to locking,
isolation, congestion, and other factors.
Put another way, the data isn’t consistently available to B.

Lesson 08: Peer-to-Peer Architectures

The Availability Problem

process

A

“hello”

B

write

read

21CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

We can solve the availability problem by duplicating the
data and creating two processes, A and B—one for each of
the two algorithms.

A and B both have a separate data store.

Of course, without further work, an update by A doesn’t result in an
update to B’s data. To make this work, we need a method for
synchronizing the data in A and B’s data stores.

Lesson 08: Peer-to-Peer Architectures

Problem Solved! Duplicate the Data

process A

A “hello”

process B

B “hello”

22CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Achieving Consistency
Lesson 08: Peer-to-Peer Architectures

Suppose A writes the value “world” into the data store. A and B are inconsistent. A
message from A to B can restore consistency so that a read by B returns the new value.
We’ve now solved the consistency problem too! We’re on a roll.

process A

A “world”

process B

B “hello”

write

process A

A “world”

process B

B “hello”

m
sg

process A

A “world”

process B

B “world”read

23CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Partitioning the Network
Lesson 08: Peer-to-Peer Architectures

But there’s a problem. Suppose A writes the value “world” into the data store leaving A and
B inconsistent. This time, however, the synchronization message from A to B is lost. This is
a simple example of a partition. When B reads, it gets the old value.

process A

A “world”

process B

B “hello”

write

process A

A “world”

process B

B “hello”

m
sg

process A

A “world”

process B

B “hello”read

24CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Getting Rid of the Partition

Unfortunately, the way to solve the potential for
partitioning the network is to get rid of it and then we’re
back where we started.

There are many things we can do to mitigate the problems of
partitioning. We learned about many of them in the Failure and
Distributed Systems section of Lesson 07. Even so, we still have to
recognize that despite our best efforts, our two processes may fail
to achieve consensus and spoil consistency.

There are good ways to guarantee any two of the CAP properties,
but for all three, the best we can do is mitigate the problems.

Distributed systems must deal with partitions as a fact of life.
Consequently, distributed systems are usually trading off
consistency and availability.

Lesson 08: Peer-to-Peer Architectures

process

A

“hello”

B

write

read

25CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Eventually Consistent

Even when partitions happen, strategies like retry and
undo can usually fix the problem given some time. The
watchword for distributed data consistency is “eventually.”

You may not think that eventual consistency is acceptable, but for a
surprisingly large set of problems, it is.

Suppose for example, that a network partition at Amazon results in
you and someone else buying the same last copy of The Live Web.
The partition prevented the process you were using from seeing
that the last copy had already been purchased.
Amazon has several options: they can refund your money or they
can delay your order and send you a copy when one becomes
available. Both of these are better, from Amazon’s perspective than
making you wait and potentially losing your business.
A bank, on the other hand, usually favors consistency over
availability for obvious reasons.

Lesson 08: Peer-to-Peer Architectures

process A

A “world”

process B

B “hello”

m
sg

26CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

We’ve seen that ACID is used to describe constraints in traditional
databases. ACID systems use complex mechanisms to assure
strong consistency.

Distributed databases use the (too cute by half) acronym BASE to
describe constraints:
Ø Basically Available—there will always be a response to a

request (although it might be “failed”).

Ø Soft state—assume the state will change over time, even when
there’s no input.

Ø Eventually consistent—once a system stops receiving input it
will eventually reach consistency.

Availability and scalability are the highest priorities of a BASE-
oriented system.

Lesson 08: Peer-to-Peer Architectures

The New pH of Databases Transactions:
BASE vs ACID

One of the most popular
uses of peer-to-peer
systems is efficiently
sharing large files

Swarm
File

Sharing

28CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Transferring large files requires
bandwidth—lots of it. Companies that do
this for a living like Netflix, Microsoft,
Apple and so on, use content delivery
networks (CDN) to save money and
provide a better user experience.

A CDN works by pre-positioning large files that
are anticipated to be in high demand, like an
OS upgrade, on proxy servers spread around
the Internet.
These proxy servers effectively cache the
large files and ensure that demand is spread
out to multiple servers in many locations.

Lesson 08: Peer-to-Peer Architectures

Content Delivery Networks

29CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Swarming file transfer is a viable option
when CDNs don’t solve the problem.

CDNs work fine for companies who can afford to
buy their services and when demand can be
anticipated. But plenty of small companies, and
even individuals, need to share large files.
Peer-to-peer file distribution, sometimes called
swarming file distribution, solves this problem by
exploiting the bandwidth and server capacity of a
community of computers rather than relying on
one server.
In swarming file transfer, an uploader starts
everything off, but then clients download files from
each other.

Lesson 08: Peer-to-Peer Architectures

Swarming File Transfers

30CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Segmented File Transfer

Segmented file transfer extends swarming
by breaking the file into segments that
clients can exchange as smaller chunks to
assemble the complete file.

In this animation, the colored bars beneath the
clients represent individual segments of the file.
The seed (bottom) transfers segments to
different machines in the network. After the
initial segment’s transfer, the segments are
transferred directly from client to client.

The original seeder only needs to send one copy
of the file for all the clients to receive a copy. The
load is spread out among all the clients.

Lesson 08: Peer-to-Peer Architectures

31CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

File Sharing Protocols

There are numerous file sharing protocols of varying
sophistication. Perhaps the most used is Bittorrent.

The most famous is probably Napster, since it created a significant
controversy because of its use to transfer music and video files,
often against the copyright owner’s wishes.
There are numerous Bittorrent clients available and services like
Bittorrent Sync, a peer-to-peer replacement for Dropbox, are built
on top of the protocol.

Lesson 08: Peer-to-Peer Architectures

Explain file sharing protocols to a friend. After
they understand what they are and how they
can be used, explore the history of Napster.
Then discuss this question: Is peer-to-peer
file sharing wrong?

Discussion Exercise

A key problem for peer-to-
peer systems is discovery—
determining which peer can
services a given need

Distributed
Discovery

34CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Napster was a peer-to-peer file sharing service that was
shutdown because it was being used to share materials
without copyright owner’s permission. Napster’s directory
was a single point of failure. Taking it out killed Napster.

In addition, Napster was found culpable because while the sharing
happened peer-to-peer, Napster ran a central directory that allowed
users to find which peers had which files.
This was also Napster’s technical undoing. Music companies killed
the network by killing the discovery service.

Bittorrent traditionally uses trackers—directories--to serve torrents.
But trackers can run anywhere and a torrent can be on multiple
trackers. Consequently, shutting down one tracker doesn’t take
down the entire network.

People find trackers using Google, but that’s just another central
directory. How can we distribute the directory?

Lesson 08: Peer-to-Peer Architectures

Napster’s Downfall

35CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Directories map keys to values.

The world is full of directories:
Ø A phone book maps names to numbers.

Ø Google maps search terms to search results.
Ø DNS maps domain names to IP addresses.

Ø The blockchain is a ledger but people sometimes use it as a
directory.

Lesson 08: Peer-to-Peer Architectures

Directories are Everywhere

36CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Directory Exercise

Complete the table to the
right by placing check
marks in the cells that
show the properties of
each directory. Be
prepared to justify your
answers.

Distributed Decentralized Heterarchical

Phone book

Google

DNS

Blockchain

Lesson 08: Peer-to-Peer Architectures

37CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Distributed Hash Tables

17
18

19

20

21

22

23

24

25

26

27

28

29

30
31 0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
1516

A distributed hash table (DHT) is a directory with no central
service. DHTs automatically heal when nodes fail. New
nodes can also join at any time.

DHTs form a ring in the address space with each node knowing
about its successor and predecessor nodes.

A simple lookup algorithm is to linearly ask down the chain until the
key is found, but that’s slower than it needs to be. Instead with an
address space of N, a table of log(N) entries can give us sufficient
data so that log(N) hops will get us the value associated with a
particular key.

DHTs provide a fast and efficient decentralized directory system.
There are many DHT algorithms including Kademlia and Chord. The
examples on the following pages use the Chord algorithm.

Lesson 08: Peer-to-Peer Architectures

38CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Example: A Small DHT

Let’s see how Chord manages lookup.

The variable m represents the logarithmic size of
the address space. For simplicity, we’ll let m = 5.
With m = 5, we can support as many as 32
nodes in the system.

DHTs are sparsely populated. In the diagram to
the right, only 9 out of 32 nodes exist. This is
even more densely populated than most DHTs
since with m=128 or m=160 we’d have lots of
space (2128 or 2160) and even millions of nodes
would be a small fraction.
Each node knows its predecessor and successor
in the ring. Thus, node 14 knows that it comes
after 11 and before 18.

Lesson 08: Peer-to-Peer Architectures

39CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Example: A Small DHT: Finger Tables

Chord uses a data structure called a finger
table to hold information used for looking
up keys.

Finger tables have m rows.

So, in the example at the right, each node keeps
information about 5 other nodes. Even in a
system with an address space of 2160 possible
nodes, each node only needs a table with 160
entries.
Line i in node p’s table shows the next node a
logarithmic number of hops from p using the
formula succ(p+2i-1). Note that succ() here is the
next node, not increment.
Study the finger tables for each node at the right
and understand why they are correct.

Lesson 08: Peer-to-Peer Architectures

40CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Example: A Small DHT: lookup(26)

Looking up key 26 from node 1 involves
forwarding the request to a series of
nodes that are progressively exponentially
closer to the node responsible for that key.

In the figure, no value in node 1’s finger table is
greater than 26, so we hop to the highest value,
18, taking the request halfway around the ring.
Since 20 < 26 < 28, node 18 forwards to 20.

Similarly, since 21 < 26 < 28, 20 forwards to 21.
Finally 26 is less than any entry in 21’s finger
table, so the value in row 1, namely 28, is the
node responsible for key 26.
Note that some lookups loop across the top.
Tables use modulo arithmetic to stay within the
address space.

Lesson 08: Peer-to-Peer Architectures

41CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Example: A Small DHT: lookup(12)

Using the figure to the right, see if you can
write down the sequence of hops that
would be involved in looking up key 12
from node 28.

Turn to the next page when you have your
answer.

Lesson 08: Peer-to-Peer Architectures

17
18

19

20

21

22

23

24

25

26

27

28

29

30
31 0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
1516

185
94

3 9
2 4

41

205
144

3 9
2 9

91

45
284

3 28
2 20

20145
284

3 28
2 28

211

95
14

3 28
2 28

281

145
44

3 1
2 1

11

285
184

3 14
2 11

111

285
204

3 18
2 14

141

15
284

3 18
2 18

181

finger table

suc
c(p

+2
i-1)

i

42CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Example: A Small DHT: lookup(12)

The figure to the right shows the sequence
of hops that would be involved in looking
up key 12 from node 28.

The lookup follows the sequence

28, 4, 9, 11, 14
Node 14 is responsible for key 12.

Lesson 08: Peer-to-Peer Architectures

17
18

19

20

21

22

23

24

25

26

27

28

29

30
31 0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
1516

185
94

3 9
2 4

41

205
144

3 9
2 9

91

45
284

3 28
2 20

20145
284

3 28
2 28

211

95
14

3 28
2 28

281

145
44

3 1
2 1

11

285
184

3 14
2 11

111

285
204

3 18
2 14

141

15
284

3 18
2 18

181

43CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Example: A Small DHT: insert(7)

When a node, p, wants to join, it looks up
the succ(p+1) and calculates its own
finger table.

Potentially, each node also has to update its
finger table.

Suppose we insert a node at 7. Calculate the
new finger tables for each node.
Hint: not every finger table needs to be updated.
Can you determine a rule for deciding if a finger
table should be checked for updating?
In a Chord-based DHT, each node is running a
background process that continually checks to
see if it’s finger table is up to date. These check
messages are overhead on the DHT network.

Turn the page for the answer.

Lesson 08: Peer-to-Peer Architectures

17
18

19

20

21

22

23

24

25

26

27

28

29

30
31 0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
1516

185
94

3 9
2 4

41

205
144

3 9
2 9

91

45
284

3 28
2 20

201
45
284

3 28
2 28

211

95
14

3 28
2 28

281

145
44

3 1
2 1

11

14

28

11

3
11

1

18

2

5
4

285
204

3 18
2 14

141

15
284

3 18
2 18

181

oldi

5
4
3
2
1

ne
w

44CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Example: A Small DHT: insert(7)

The finger tables at the right have the old
(before 7 is inserted) and new (after 7 is
inserted) values for each row.

Note that tables in nodes with a value in the last
row greater than the node number we’re
inserting might need to be updated.

Lesson 08: Peer-to-Peer Architectures

17
18

19

20

21

22

23

24

25

26

27

28

29

30
31 0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
1516

7
4

18
9

4

185
94

3 9
2 4

41

7

9
7

20
14

205
144

3 9
2 9

91

45
284

3 28
2 20

201
45
284

3 28
2 28

211

1
28

28
28

795
14

3 28
2 28

281

145
44

3 1
2 1

11

14

28

11

3
11

1

18

2

5
4

285
204

3 18
2 14

141

15
284

3 18
2 18

181

oldi

285
184

3 11
2 9

91

ne
w

Summary & Review
CreditsConclusion

46CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Summary and Review

In this lesson we’ve explores common problems
that peer-to-peer architectures face.

There are a number of common fallacies.
Distributed system architects often assume
things that aren’t true when designing peer-to-
peer systems.
The CAP theorem is a expression of one set of
trade-offs that peer-to-peer architects must
make. Since distributed systems must live with
network partitioning, the choice comes down to
one between consistency and availability.

One big use for peer-to-peer architectures is
sharing large files. Swarm file sharing uses
peers, cryptographic signatures, and segmented
files to efficiently overcome availability problems
caused by congestion at a single file server.

Distributed discovery makes use of clever
algorithms to efficiently lookup values that are
distributed among a set of peers. DHTs
overcome the need for centralization while
making lookup efficient.

Lesson 08: Peer-to-Peer Architectures

47CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Credits
Photos and Diagrams:
Ø US Navy Equipment Operator (https://commons.wikimedia.org/wiki/File:US_Navy_060127-N-

4215N-
005_Equipment_Operator_3rd_Class_Tyler_Randall_assigned_to_Naval_Mobile_Construction_Bat
talion_Four_(NMCB-
4),_Det_San_Clemente_Island_operates_an_excavator_during_a_rock_crushing_evolution.jpg),
Public domain

Ø Steel pipes (https://commons.wikimedia.org/wiki/File:Metal_tubes_stored_in_a_yard.jpg), CC BY-
SA 2.0

Ø Anonymous mask (https://pixabay.com/en/anonymous-mask-protest-people-615157/), Public
domain

Ø Fully-Connected Topology (https://commons.wikimedia.org/wiki/File:NetworkTopology-
FullyConnected.png), Public Domain

Ø Three-headed dog (https://commons.wikimedia.org/wiki/File:Three-
headed_dog_at_Steampunk_HQ.jpg), Public domain

Ø USI Router (https://commons.wikimedia.org/wiki/File:USI_router.jpg), CC BY-4.0

Lesson 08: Peer-to-Peer Architectures

https://commons.wikimedia.org/wiki/File:US_Navy_060127-N-4215N-005_Equipment_Operator_3rd_Class_Tyler_Randall_assigned_to_Naval_Mobile_Construction_Battalion_Four_(NMCB-4),_Det_San_Clemente_Island_operates_an_excavator_during_a_rock_crushing_evolu
https://commons.wikimedia.org/wiki/File:Metal_tubes_stored_in_a_yard.jpg
https://pixabay.com/en/anonymous-mask-protest-people-615157/
https://commons.wikimedia.org/wiki/File:NetworkTopology-FullyConnected.png
https://commons.wikimedia.org/wiki/File:Three-headed_dog_at_Steampunk_HQ.jpg
https://commons.wikimedia.org/wiki/File:USI_router.jpg

48CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Credits (cont.)
Photos and Diagrams:
Ø Eric Brewer (https://commons.wikimedia.org/wiki/File:TNW_Con_EU15_-_Eric_Brewer_(scientist)-

2.jpg), CC BY-SA 4.0
Ø Two small test tubes

(https://commons.wikimedia.org/wiki/File:Two_small_test_tubes_held_in_spring_clamps.jpg), CC
BY-SA 3.0

Ø Torrentcomp small by Wikiadd (https://commons.wikimedia.org/wiki/File:Torrentcomp_small.gif),
CC BY-SA 3.0

Ø Bittorrent (https://commons.wikimedia.org/wiki/File:BitTorrent_network.svg), CC BY-SA 3.0
Ø HK CityU Directory

(https://commons.wikimedia.org/wiki/File:HK_CityU_To_Yuen_Building_directory_yellow_sign_She
k_Kip_Mei_Estate_Sept-2012.JPG), CC BY-SA 3.0

Ø Bundle of nanoseconds
(https://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper_visualizing_nanoseconds.png),
Public domain

All other photos and diagrams are either commonly available logos or property of the author.

Lesson 08: Peer-to-Peer Architectures

https://commons.wikimedia.org/wiki/File:TNW_Con_EU15_-_Eric_Brewer_(scientist)-2.jpg
https://commons.wikimedia.org/wiki/File:Two_small_test_tubes_held_in_spring_clamps.jpg
https://commons.wikimedia.org/wiki/File:Torrentcomp_small.gif
https://commons.wikimedia.org/wiki/File:BitTorrent_network.svg
https://commons.wikimedia.org/wiki/File:HK_CityU_To_Yuen_Building_directory_yellow_sign_Shek_Kip_Mei_Estate_Sept-2012.JPG
https://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper_visualizing_nanoseconds.png

