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Introduction

Peer-to-peer (P2P) architectures are networked 
systems where each node in the network is on 
equal footing with every other node. 

The largest and most successful P2P network is 
the Internet itself. Every machine connected to 
the network gets an IP address and can interact 
with any other machine on the Internet so long 
as it knows that machine’s IP address. 
The Web is not a P2P architecture because it 
sees some machines as clients and some as 
servers. They are not peers.

Special purpose P2P systems are frequently 
built on top of the Internet. Such a network is 
called an overlay network. 

Designing a functional P2P system can be 
difficult because humans think in stories—
linearly. And we love centralized systems 
because they’re easy to understand. 
This lesson introduces concepts and algorithms 
for building practical decentralized peer-to-peer 
systems. 

Lesson 08: Peer-to-Peer Architectures
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Lesson Objectives

After completing this lesson, you should be able to:

1. Explain the eight fallacies of distributed computing
2. Give examples of the CAP theorem and explain tradeoffs

3. Show how distributed file sharing works and relate it to consensus
4. Describe distributed discovery and show how a distributed hash table works

Lesson 08: Peer-to-Peer Architectures



5CS462 – Large-Scale Distributed Systems © PJW LC (CC BY-NC 4.0)

Reading
Read the following:

Ø Fallacies of Distributed Computing Explained (PDF) by Arnon Rotem-Gal-Oz 
(http://www.rgoarchitects.com/Files/fallacies.pdf)

Ø A plain English introduction to CAP Theorem by Kaushik Sathupadi (http://ksat.me/a-plain-english-
introduction-to-cap-theorem/ )

Ø Perspectives on the CAP Theorem (PDF) by Seth Gilbert and Nancy A. Lynch 
(http://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf )

Ø The Scalability of Swarming Peer-to-Peer Content Delivery by Daniel Stutzbach, Daniel Zappala, and 
Reza Rejaie
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.1599&rep=rep1&type=pdf )

Ø Bittorrent, how it works? (https://www.youtube.com/watch?v=6PWUCFmOQwQ )

Ø Chord: a scalable peer-to-peer lookup protocol for internet applications (PDF) by Ion Stoica, et. al. (in 
LMS)

Ø Intro to Distributed Hash Tables by real (https://www.freedomlayer.org/intro-to-distributed-hash-
tables-dhts.html)
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Additional Resources

Additional Resources:
Ø Availability and Consistency by Werner Vogels (http://www.infoq.com/presentations/availability-

consistency ) 

Ø Eventually Consistent – Revisited by Werner Vogels
(http://www.allthingsdistributed.com/2008/12/eventually_consistent.html )

Ø The Short History of Napster 1.0 by Alex Winter (http://www.wired.com/2013/04/napster/ )
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Some Reasons Distributed Systems Are 
Hard to Get Right

Developers frequently run into problems when they scale up a 
prototype. One key difference between prototypes and production 
code is taking into account fallacies.

While the number of mistaken assumptions one can make is large, 
a few are so widespread that they rise to the level of being a 
common fallacy. 
By understanding these fallacies and the arguments that lead us to 
believe them, we can avoid the problems they cause in our 
architectures. Or, at least, more accurately pinpoint the root cause 
of a failure after the fact. 

Fallacies are false 
beliefs based on 
unsound arguments. 
Fallacies are often 
unconscious. 
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The Eight Fallacies of 
Distributed Computing

In 1994, Peter Deutsch 
published a list of seven 
poor assumptions that 
distributed system 
architects often make. In 
1997, James Gosling 
added an eighth. 

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.

4. The network is secure.
5. Topology doesn't change. 
6. There is one administrator. 

7. Transport cost is zero.
8. The network is homogeneous.

Lesson 08: Peer-to-Peer Architectures
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The Network Is Reliable

We’ve all heard that the Internet routes around problems. 
And generally speaking, that statement is true—until it 
isn’t. 

While the Internet in general is quite reliable, that doesn’t mean 
that Comcast built redundant fiber links to your neighborhood or 
the data center engineers didn’t make a mistake when they 
configured their routers. 

Networks fail all the time. Distributed systems have to be designed 
to be mostly (and sometimes just occasionally) connected and still 
function. 

Lesson 08: Peer-to-Peer Architectures
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Latency Is Zero

Latency in distributed systems is the amount of time it 
takes to get a response to a message sent to a remote 
process. 

Latency can be caused by propagation delay, network congestion, 
data serialization, data transmission, and application processing 
and delay. 

Network delay is usually so small that it disappears for humans, 
but to machines, it’s a very long time.
For example, hard disk access times are measured in milliseconds 
while RAM access times are measured in microseconds or even 
nanoseconds. 
Sending a packet over a network from the US to Europe can take 
10’s of microseconds. So, to a program, communicating with 
remote machines appears very slow. 

Lesson 08: Peer-to-Peer Architectures
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Bandwidth Is Infinite

Bandwidth is the carrying capacity of the network. In 
distributed systems, you can think of it as the total 
throughput of the remote process. 

Bandwidth is an emergent feature of the architectural choices and 
can often be increased with additional time and money. But it is 
not infinite and it is certainly not free. 

A scalable architecture has the ability to increase its throughput to 
meet the needs of it’s clients. Designing for scalability is a tough 
problem that good distributed system architects keep top of mind.  

Lesson 08: Peer-to-Peer Architectures
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The Network Is Secure

The only completely secure system is one that’s not 
connected to the Internet.

Of course, everyone knows this. But many systems are developed 
with security as a second order concern. Sometimes the system is 
a prototype that grew up. And pressure to deliver always gets in the 
way. 
Distributed systems are especially vulnerable because, by 
definition, they’re using networks to communicate. Network 
security is a complicated subject, but many security problems can 
be mitigated by well-known design principles. 

Lesson 08: Peer-to-Peer Architectures
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Topology Doesn’t Change

Network topology can change when new network nodes 
are added or a node is deleted. Topology can also change 
because of spanning tree changes in the network itself, 
making previously close processes appear more distant. 

When the topology changes, assumptions about where remote 
processes are and how to reach them can change as well. 
Configurations that rely on fixed numbers of components, hand-
built configuration files (instead of discovery), or poor expectations 
about latency can fail when faced with a topology change. 

Lesson 08: Peer-to-Peer Architectures
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There Is One Administrator

Distributed systems cannot be coordinated by fiat. 

Most distributed systems make use of resources that are 
controlled by multiple administrators. For a decentralized system 
where the remote processes are under the control of separate 
entities, the is no central entity who can force compliance or 
cooperation.
Distributed system designers have to take system ownership and 
administration into account when considering how their system will 
deploy, how to handle failures, user accounts and provisioning, and 
a host of other concerns. 
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Transport Cost Is Zero

Networks cost money. Bandwidth costs money. If your 
messages are small, the cost may be insignificant, but 
many payloads are not. 

As we saw in Lesson 01, overcoming latency problems is even 
more expensive because you’re in a race with physics. When 
latency matters, reducing it can cost millions of dollars. 

Underestimating transport costs can turn a project or business into 
a good idea that failed when funding becomes unfeasible. 
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The Network Is Homogenous

Distributed systems run on networks with different 
physical layers, different topologies, and different 
protocols. 

Moreover, distributed applications may deal with different APIs that 
use differing serialization formats, authentication protocols, and 
design philosophies. 

Successful distributed applications flexibly handle these 
differences. Successful distributed system architects use dynamic 
applications and discovery rather than static configuration in their 
design wherever possible. 

Lesson 08: Peer-to-Peer Architectures
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The Cap Theorem

Eric Brewer originally formulated what has come to be 
known as the CAP Theorem in 1998. The CAP Theorem 
states that it is impossible for a distributed system to 
simultaneously guarantee:

Ø Consistency—all nodes see the same data at the same time
Ø Availability—every request received by a non-failing node in the 

system must result in a response

Ø Partition tolerance—the system continues to operate despite 
arbitrary partitioning due to network failures

Let’s explore these further.
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One way to get consistency is to make sure everything is 
looking at the same data. 

The figure shows two algorithms, A and B, in the same process and 
sharing a database.  They see the same data. When A writes to the 
database, B sees the new value.
As we saw in Lesson 07, this configuration can only achieve 
consistency by carefully controlling when A and B access the data. 
B may not always be allowed to read A’s changes due to locking, 
isolation, congestion, and other factors. 
Put another way, the data isn’t consistently available to B. 
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We can solve the availability problem by duplicating the 
data and creating two processes, A and B—one for each of 
the two algorithms. 

A and B both have a separate data store. 

Of course, without further work, an update by A doesn’t result in an 
update to B’s data. To make this work, we need a method for 
synchronizing the data in A and B’s data stores. 
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Achieving Consistency
Lesson 08: Peer-to-Peer Architectures

Suppose A writes the value “world” into the data store. A and B are inconsistent. A 
message from A to B can restore consistency so that a read by B returns the new value. 
We’ve now solved the consistency problem too! We’re on a roll. 

process A

A “world”

process B

B “hello”

write

process A

A “world”

process B

B “hello”

m
sg

process A

A “world”

process B

B “world”read
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Partitioning the Network
Lesson 08: Peer-to-Peer Architectures

But there’s a problem. Suppose A writes the value “world” into the data store leaving A and 
B inconsistent. This time, however, the synchronization message from A to B is lost. This is 
a simple example of a partition. When B reads, it gets the old value. 

process A

A “world”

process B

B “hello”

write

process A

A “world”

process B

B “hello”

m
sg

process A

A “world”

process B

B “hello”read
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Getting Rid of the Partition

Unfortunately, the way to solve the potential for 
partitioning the network is to get rid of it and then we’re 
back where we started. 

There are many things we can do to mitigate the problems of 
partitioning. We learned about many of them in the Failure and 
Distributed Systems section of Lesson 07. Even so, we still have to 
recognize that despite our best efforts, our two processes may fail 
to achieve consensus and spoil consistency. 

There are good ways to guarantee any two of the CAP properties, 
but for all three, the best we can do is mitigate the problems.

Distributed systems must deal with partitions as a fact of life. 
Consequently, distributed systems are usually trading off 
consistency and availability.  
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Eventually Consistent

Even when partitions happen, strategies like retry and 
undo can usually fix the problem given some time. The 
watchword for distributed data consistency is “eventually.”

You may not think that eventual consistency is acceptable, but for a 
surprisingly large set of problems, it is. 

Suppose for example, that a network partition at Amazon results in 
you and someone else buying the same last copy of The Live Web. 
The partition prevented the process you were using from seeing 
that the last copy had already been purchased. 
Amazon has several options: they can refund your money or they 
can delay your order and send you a copy when one becomes 
available. Both of these are better, from Amazon’s perspective than 
making you wait and potentially losing your business. 
A bank, on the other hand, usually favors consistency over 
availability for obvious reasons.
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We’ve seen that ACID is used to describe constraints in traditional 
databases. ACID systems use complex mechanisms to assure 
strong consistency. 

Distributed databases use the (too cute by half) acronym BASE to 
describe constraints:
Ø Basically Available—there will always be a response to a 

request (although it might be “failed”).

Ø Soft state—assume the state will change over time, even when 
there’s no input.

Ø Eventually consistent—once a system stops receiving input it 
will eventually reach consistency. 

Availability and scalability are the highest priorities of a BASE-
oriented system. 
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Transferring large files requires 
bandwidth—lots of it. Companies that do 
this for a living like Netflix, Microsoft, 
Apple and so on, use content delivery 
networks (CDN) to save money and 
provide a better user experience. 

A CDN works by pre-positioning large files that 
are anticipated to be in high demand, like an 
OS upgrade, on proxy servers spread around 
the Internet. 
These proxy servers effectively cache the 
large files and ensure that demand is spread 
out to multiple servers in many locations. 
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Swarming file transfer is a viable option 
when CDNs don’t solve the problem. 

CDNs work fine for companies who can afford to 
buy their services and when demand can be 
anticipated. But plenty of small companies, and 
even individuals, need to share large files. 
Peer-to-peer file distribution, sometimes called 
swarming file distribution, solves this problem by 
exploiting the bandwidth and server capacity of a 
community of computers rather than relying on 
one server. 
In swarming file transfer, an uploader starts 
everything off, but then clients download files from 
each other. 
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Segmented File Transfer

Segmented file transfer extends swarming  
by breaking the file into segments that 
clients can exchange as smaller chunks to 
assemble the complete file. 

In this animation, the colored bars beneath the 
clients represent individual segments of the file. 
The seed (bottom) transfers segments to 
different machines in the network. After the 
initial segment’s transfer, the segments are 
transferred directly from client to client. 

The original seeder only needs to send one copy 
of the file for all the clients to receive a copy. The 
load is spread out among all the clients. 

Lesson 08: Peer-to-Peer Architectures
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File Sharing Protocols

There are numerous file sharing protocols of varying 
sophistication. Perhaps the most used is Bittorrent. 

The most famous is probably Napster, since it created a significant 
controversy because of its use to transfer music and video  files, 
often against the copyright owner’s wishes. 
There are numerous Bittorrent clients available and services like 
Bittorrent Sync, a peer-to-peer replacement for Dropbox, are built 
on top of the protocol. 
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Napster was a peer-to-peer file sharing service that was 
shutdown because it was being used to share materials 
without copyright owner’s permission. Napster’s directory 
was a single point of failure. Taking it out killed Napster. 

In addition, Napster was found culpable because while the sharing 
happened peer-to-peer, Napster ran a central directory that allowed 
users to find which peers had which files. 
This was also Napster’s technical undoing. Music companies killed 
the network by killing the discovery service. 

Bittorrent traditionally uses trackers—directories--to serve torrents.  
But trackers can run anywhere and a torrent can be on multiple 
trackers. Consequently, shutting down one tracker doesn’t take 
down the entire network. 

People find trackers using Google, but that’s just another central 
directory. How can we distribute the directory? 

Lesson 08: Peer-to-Peer Architectures
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Directories map keys to values. 

The world is full of directories:
Ø A phone book maps names to numbers. 

Ø Google maps search terms to search results.
Ø DNS maps domain names to IP addresses.

Ø The blockchain is a ledger but people sometimes use it as a 
directory. 

Lesson 08: Peer-to-Peer Architectures
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Directory Exercise

Complete the table to the 
right by placing check 
marks in the cells that 
show the properties of 
each directory. Be 
prepared to justify your 
answers.

Distributed Decentralized Heterarchical

Phone book

Google

DNS

Blockchain
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Distributed Hash Tables
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A distributed hash table (DHT) is a directory with no central 
service. DHTs automatically heal when nodes fail. New 
nodes can also join at any time. 

DHTs form a ring in the address space with each node knowing 
about its successor and predecessor nodes. 

A simple lookup algorithm is to linearly ask down the chain until the 
key is found, but that’s slower than it needs to be. Instead with an 
address space of N, a table of log(N) entries can give us sufficient 
data so that log(N) hops will get us the value associated with a 
particular key. 

DHTs provide a fast and efficient decentralized directory system. 
There are many DHT algorithms including Kademlia and Chord. The 
examples on the following pages use the Chord algorithm. 
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Example: A Small DHT

Let’s see how Chord manages lookup. 

The variable m represents the logarithmic size of 
the address space. For simplicity, we’ll let m = 5. 
With m = 5, we can support as many as 32
nodes in the system. 

DHTs are sparsely populated. In the diagram to 
the right, only 9 out of 32 nodes exist. This is 
even more densely populated than most DHTs 
since with m=128 or m=160 we’d have lots of 
space (2128 or 2160) and even millions of nodes 
would be a small fraction.
Each node knows its predecessor and successor 
in the ring. Thus, node 14 knows that it comes 
after 11 and before 18. 
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Example: A Small DHT: Finger Tables

Chord uses a data structure called a finger 
table to hold information used for looking 
up keys. 

Finger tables have m rows.

So, in the example at the right, each node keeps 
information about 5 other nodes. Even in a 
system with an address space of 2160 possible 
nodes, each node only needs a table with 160 
entries.
Line i in node p’s table shows the next node a 
logarithmic number of hops from p using the 
formula succ(p+2i-1). Note that succ() here is the 
next node, not increment. 
Study the finger tables for each node at the right 
and understand why they are correct. 
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Example: A Small DHT: lookup(26)

Looking up key 26 from node 1 involves 
forwarding the request to a series of 
nodes that are progressively exponentially 
closer to the node responsible for that key. 

In the figure, no value in node 1’s finger table is 
greater than 26, so we hop to the highest value, 
18, taking the request halfway around the ring.
Since 20 < 26 < 28, node 18 forwards to 20. 

Similarly, since 21 < 26 < 28, 20 forwards to 21.
Finally 26 is less than any entry in 21’s finger 
table, so the value in row 1, namely 28, is the 
node responsible for key 26.
Note that some lookups loop across the top. 
Tables use modulo arithmetic to stay within the 
address space.  
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Example: A Small DHT: lookup(12)

Using the figure to the right, see if you can 
write down the sequence of hops that 
would be involved in looking up key 12 
from node 28. 

Turn to the next page when you have your 
answer. 
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Example: A Small DHT: lookup(12)

The figure to the right shows the sequence 
of hops that would be involved in looking 
up key 12 from node 28. 

The lookup follows the sequence 

28, 4, 9, 11, 14
Node 14 is responsible for key 12. 
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Example: A Small DHT: insert(7)

When a node, p, wants to join, it looks up 
the succ(p+1) and calculates its own 
finger table. 

Potentially, each node also has to update its 
finger table. 

Suppose we insert a node at 7. Calculate the 
new finger tables for each node. 
Hint: not every finger table needs to be updated. 
Can you determine a rule for deciding if a finger 
table should be checked for updating?
In a Chord-based DHT, each node is running a 
background process that continually checks to 
see if it’s finger table is up to date. These check 
messages are overhead on the DHT network. 

Turn the page for the answer. 
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Example: A Small DHT: insert(7)

The finger tables at the right have the old 
(before 7 is inserted) and new (after 7 is 
inserted) values for each row. 

Note that tables in nodes with a value in the last 
row greater than the node number we’re 
inserting might need to be updated.  
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Summary and Review

In this lesson we’ve explores common problems 
that peer-to-peer architectures face. 

There are a number of common fallacies. 
Distributed system architects often assume 
things that aren’t true when designing peer-to-
peer systems. 
The CAP theorem is a expression of one set of 
trade-offs that peer-to-peer architects must 
make. Since distributed systems must live with 
network partitioning, the choice comes down to 
one between consistency and availability. 

One big use for peer-to-peer architectures is 
sharing large files. Swarm file sharing uses 
peers, cryptographic signatures, and segmented 
files to efficiently overcome availability problems 
caused by congestion at a single file server. 

Distributed discovery makes use of clever 
algorithms to efficiently lookup values that are 
distributed among a set of peers. DHTs 
overcome the need for centralization while 
making lookup efficient. 
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