

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute

Chapter 12. Advanced KRL Programming
So far we’ve seen rulesets that work in a variety of domains and in a
variety of circumstances, but all of the examples have been small,
involving just a single ruleset of a few rules. The event interactions have
been simple. In this chapter we’ll tackle applications that require multiple
rulesets and more complicated event hierarchies.

Knowing how to build applications in KRL using multiple rulesets opens
up the possibilities of what you can build on the Live Web. Along the way
we’ll come to understand event hierarchies and normalization as well as
some programming principles that support loosely coupled applications
where functionality can be added without significant changes to the
underlying parts.

In this chapter we’ll build a blogging tool using KRL. Building a blog
with KRL is easier than you’d think and departs in several significant
ways from the examples we’ve explored previously in this book.

A Blog in KRL
The blog that we’ll create will use four rulesets:

1. KBlog Configuration—a module that is used to configure
the application and hold common definitions.

2. KBlog—the main ruleset that controls the HTML assets and
presentation. This ruleset functions like the presentation layer of a
traditional Web application, responding to user input and
displaying results.

3. KData—the ruleset that manages the blog data. This ruleset
manages the data assets and provides access rules. At first we’ll
use application variables to store the blog data as a simple way of
getting started. In a second instance we’ll use online storage to
manage the data.

4. KBlog Posting—we separate posting from the other parts of
the application so that only people who had access to this ruleset

Note: The topic of this post, creating a blog, is dependent on features in the KRE-
version of the Pico Engine, not the new Pico Engine. Nevertheless, the ideas in this
chapter about event programming and even hierarchies (really, graphs) are useful.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 2

can post. This is not a good solution to controlling access to blog
posting, but it is sufficient for demonstration purposes.

The following sections will explore each of these rulesets in turn. Later in
this chapter, we’ll add a fifth to show how loose coupling supports
application extension.

Configuration
KBlog Configuration provides several common definitions for
variables, functions, and actions that are used in the other rulesets. KBlog
Configuration is built as a module since other rulesets will access the
definitions it contains.

The variables declared in the module include blogtitle that holds the
string that will be used as the blog’s title. The various rulesets use
blogtitle to construct page titles.

The right hand column of each blog page contains some text describing
the blog. KBlog Configuration provides a variable called
about_text to store this text as well even though it’s only used in one
place. Having it in the configuration module allows the users to go to just
one ruleset to change the various, fixed textual elements of the blog.

KBlog Configuration also defines two actions,
paint_container and place_button. We will describe their
function later. The provides pragma in the meta section of the ruleset
makes each of these available to the other rulesets in the KBlog
application.
provides blogtitle, about_text, paint_container, place_button

The other rulesets in the application use the configuration module with the
use module pragma in their meta section:
use module a16x93 alias config

Building the Blog
The primary job of the KBlog ruleset is presenting the blog. KBlog does
this by preparing the container for the blog articles and then filling it with
the articles.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 3

The blog is built in a style that’s called single page interface or SPI1. In
SPI-style Web applications, the basic framework of the application, the
HTML, CSS, and JavaScript libraries are loaded in an initial call and then
partial changes to the page are made incrementally via JavaScript AJAX
calls.
Sites like Google, Twitter, Gawker, and others made this style of Web site
construction popular. The chief advantage is a faster user experience as a
consequence of reduced bandwidth from not requiring that things like the
HTML and CSS be downloaded each time. KRL is a natural way to build
sites that use this style of construction.

Figure 1. A blog written in KRL

1 See http://en.wikipedia.org/wiki/Single-page_application for a complete
description of the principles behind single page interface Web
applications.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 4

The DOM

Figure 1 shows the basic layout of the site. A navigation bar at the top
contains links that can be used to navigate between different parts of the
site: the home page and contact page. The DOM for the navigation bar is
initially empty:
<nav id="sitenav">

 <ul id="navlist">

</nav>

We’ll use rules to place buttons in the navigation bar as appropriate.

The primary section of the blog—the left container—is where page
content is written. Initially it is empty and has the following structure:
<div id="leftcontainer"></div>

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 5

The information section of the blog—the about section on the right—is
also initially empty:
<div id="sidebarwarp">

 <h2>About KBlog</h2>

 <p id="about"></p>

</div>

Unlike other KRL applications we’ve built in previous chapters, the blog
application isn’t triggered by an event from the endpoint. Instead we’ll
plant tags in the DOM that trigger the event and cause the blog application
to execute. That way, anyone—not just people with an endpoint
installed—can see the blog. Here are the JavaScript <script/> tags that
we place in the page:
<script type="text/javascript">

 KOBJ_config= {"rids":["a16x88"],

 "a16x88:kinetic_app_version":"dev",};

</script>

<script src="http://init.kobj.net/js/shared/kobj-static.js" />

The first JavaScript tag sets of the configuration variable to identify the
ruleset IDs (RIDs) for the KBlog ruleset (a16x88 in this case). The
configuration also sets the kinetic_app_version configuration
variable to “dev” indicating that the development (most recent) version
and not the production (last deployed) version of the ruleset should be
executed. This ensures that we don’t have to continually deploy the ruleset
as we are testing. Later, when the application is finished, we’d either
change the value of this variable to “prod” or simply delete it since “prod”
is the default. Note that the variable is namespaced using the RID.
The second <script/> tag loads the Web endpoint. The endpoint will
read the configuration we set up and initiate a pageview event for this
page. Normally this is all done by a browser extension, but it works just as
well to put the <script/> tags in place directly for an SPI Web
application.
Even though we’re placing the tags in the HTML of the page directly, that
doesn’t change the method we’ll use to construct KRL rulesets. The
structure and functionality of the application follow from the desired
behavior, not the method that is used to raise events.

The Rules

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 6

The rules in the KBlog ruleset handle the content of the page. As noted
earlier, the overall structure of the page and the CSS stylesheet are loaded
when the user goes to the URL for the blog. The <script/> tags that
we discussed in the previous section initiate a pageview event.
The init_html rule is selected when the pageview event is raised. This
rule is responsible for painting the “about” text on the right side and
setting up the navigation buttons. Init_html is the only rule in the
entire application that is selected on a pageview event. The selector is very
general because it should fire whenever the blog is viewed.
rule init_html {

 select when pageview ".*" setting ()

 {

 replace_html("#about", config:about_text);

 config:place_button("Home");

 config:place_button("Contact");

 }

 always {

 raise explicit event blog_ready

 }

}

Init_html places the buttons using an action, place_button(),
from the configuration module. Place_button() takes a name as it’s
only parameter, creates the correct HTML for the button using the name,
places it in the navigation bar, and attaches a watcher to the button so that
any clicks will raise events:
place_button = defaction(button_name) {

 id = "siteNav" + button_name;

 label = button_name;

 button = <<

#{label}

 >>;

 {

 prepend("#navlist", button);

 watch("#" + id, "click");

 }

 }

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 7

Init_html raises the explicit event blog_ready to indicate that the
blog is ready to be populated with the page content. There are two pages
in this example: the home page showing the blog articles and the contact
page that has contact information.
Show_home is selected when one of two events occurs: someone clicks
the home link on the navigation bar or there is an explicit blog_ready
event (note this makes the home page the default). The show_home rule
sets up the container to receive blog posts and sets the title:
rule show_home {

 select when web click "#siteNavHome"

 or explicit blog_ready

 pre {

 container = <<

<h2 class="mainheading">Latest from the blog</h2>

<div id="blogarticles">Code Monkey was here :)</div>

 >>;

 title = config:blogtitle;

 }

 config:paint_container(title, container);

 always {

 raise explicit event container_ready;

 raise explicit event need_blog_data for a16x89

 }

}

The show_home rule makes use of a user defined action,
paint_container() from KBlog Configuration:
paint_container = defaction(title, container) {

 {replace_inner("title", title);

 replace_inner("#leftcontainer", container);

 }

}

Paint_container is also used by the show_contact rule that puts
up the contact page when someone clicks on that link. A user-defined
action ensures that we do this the same way both times.
Show_home raises two explicit events, one that indicates that the
container is ready and another that says that data is needed. We’ll discuss

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 8

the rules that respond to the latter event in the next section, but ultimately,
the result of that process is that the explicit blog_data_ready event is
raised.

Putting the actual blog articles in the container is the job of a rule named
show_articles. This rule fires when the container_ready and
blog_data_ready events are raised. Both events must occur before
we place the articles on the blog, but the order is unimportant.
The rule loops over each member of the hash representing the blog data,
formats the correct HTML, and inserts it into the page:
rule show_articles {

 select when explicit container_ready

 and explicit blog_data_ready

 foreach event:param("blogdata") setting (postKey, postHash)

 pre {

 postArticle = <<

<article class="post">

 <header>

 <h3>#{ postHash.pick("$.title") }</h3>

 by #{ postHash.pick("$.author") }

 </header>

 <p>#{ postHash.pick("$.body") }</p>

 <footer>

 <p class="postinfo">

 Published on <time>#{ postHash.pick("$.time") }</time></p>

 </footer>

</article>

 >>;

 }

 prepend("div#blogarticles", postArticle);

}

By initializing the blog, placing the page container, and then filling it in
with separate rules, we build the blog in pieces. Navigation actions simply
update the portion of the structure that is changing, leaving the rest
unchanged. In high volume Web sites, this can amount to a considerable
savings in bandwidth and increase the user’s perception of application
responsiveness.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 9

Handling Data
One of my goals in creating the demonstration blog was to separate the
handling of data from the rules that performed presentation. Certainly
that’s good design, even if all the rules are in the same ruleset. The event
hierarchy is more interesting and we can better explore loose coupling if
we put the data handling rules in a separate ruleset.
For this example, we’ll make use of KRL’s built-in persistent storage to
keep the blog post data. In a production blog, of course, we’d use a
database, not persistent variables. Using persistents as a substitute for a
database, can speed prototyping, but they are not designed for the kind of
heavy-duty data operations that databases are.

But given that we’re using persistent variables, application variables are
the right construct for our goals because every visitor will see the same set
of blog posts. If we used entity variables, every visitor to the blog would
see their own posts and no others.

The structure of the application variable will be a map of maps with each
entry in the map representing a blog post. Each blog post has an author,
title, body, and timestamp. We define a function that formats the map
representing a single blog post like so:
mk_article = function (author, title, body) {

 postTime = time:now({"tz":"America/Denver"});

 { postTime : {"author" : author,

 "title" : title,

 "body" : body,

 "time" : postTime

 }}

}

The function calculates the timestamp and uses it as a key for the map as
well as placing it in the blog entry map.

The only place where we can mutate a persistent variable is in the rule
postlude, so if we are going to use persistents to store blog article data, we
have to use a rule to process the data. Add_article watches for
articles, formats the data with the mk_article function, and adds it to
the app variable BlogArticles:
rule add_article {

 select when explicit new_article_available

 pre {

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 10

 post = event:param("post");

 postHash = mk_article(post.pick("$..postauthor"),

 post.pick("$..posttitle"),

 post.pick("$..postbody"));

 articles = app:BlogArticles || {};

 }

 always {

 set app:BlogArticles articles.put(postHash);

 raise explicit event new_article_added for a16x88;

 }

}

Note that this rule takes no action. The benefit is all in the effects.
Whenever a new article is available, add_article will use the post
data from the event parameter to format a new entry and put it in the
application variable BlogArticles. The disjunction operator in the
declaration of articles ensures that articles will be defined as an
empty map if BlogArticles is undefined. Otherwise, the put operator
won’t function correctly.

When add_article fires, it raises an explicit event to indicate a new
article has been added. The KBlog ruleset contains an intermediary rule,
show_new_article that transforms this event into a blog_ready
event. As we saw above, the show_home rule is listening for the
blog_ready event and this causes the screen to be repainted.
rule show_new_article {

 select when explicit new_article_added

 noop();

 always {

 raise explicit event blog_ready

 }

}

We saw in the preceding discussion that the show_home rule raises an
explicit event need_blog_data. This is about as close to a request as
we get in this example. A request would direct a specific function to return
the data. The event merely says that data is needed. The show_home rule
doesn’t know who will respond.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 11

The retrieve_data rule selects on the explicit event
need_blog_data and raises the explicit event blog_data_ready,
attaching the blog data from the application variable as an event attribute:
rule retrieve_data {

 select when explicit need_blog_data

 noop();

 always {

 raise explicit event blog_data_ready for a16x88

 with blogdata = app:BlogArticles || []

 }

}

Posting
All that’s left to complete the application is adding the ability to post. As
explained earlier, this functionality is in a separate ruleset and layered on
top of the basic functionality of the blog. Most users will never need the
functionality and won’t see it. Only posters need access the rules that
enable posting.
The first order of business is to add a navigation button to the bar at the
top of the page exposing the functionality. The place_button rule fires
on a pageview event, puts the button in place, and makes it active by
attaching a watcher to it using the place_button() action we defined
earlier:
rule place_button {

 select when pageview "kblog"

 config:place_button("Post");

}

Note that, as before, we’ve aliased the configuration module as config.

When someone clicks on the Post button, the Web endpoint will raise a
click event and the place_form rule will fire. Place_form creates a
form, places it on the page by replacing the left container, and attaches a
watcher to the Submit button (some of the HTML in the form has been
removed for brevity):
rule place_form {

 select when web click "#siteNavPost"

 pre {

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 12

 form = <<

<h2 class="mainheading">Post</h2>

<article class="post">

 <form method="post" class="form" id="blogform">

 <p class="textfield">

 <label for="postauthor"><small>Name</small></label>

 <input name="postauthor" tabindex="1" type="text"></p>

 ...

 <p><input name="submit" type="image" src="submit.png"></p>

 <div class="clear"></div>

 </form>

 </article>

 >>;

 title = config:blogtitle + "- Post";

 }

 {

 config:paint_container(title, form);

 watch("#blogform", "submit");

 }

}

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 13

Figure 2 shows the result of this rule firing: the form is painted on the
page so the user can fill it out.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 14

When the user clicks on the submit link on the form in

Figure 2, the Web endpoint raises a submit event. The handle_submit
rule handles that event:
rule handle_submit {

 select when submit "#blogform"

 always {

 raise explicit event new_article_available

 for ["a16x89", "a16x91"]

 with post = event:attrs();

 }

 }

Handle_submit raises the new_article_available event with
the data from the form. As we’ve seen, the new_article_event is
handled by add_article from the KBlog Data ruleset.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 15

With the addition of the KBlog Post ruleset, we now have a complete,
albeit simple blog application. The blog owner can post articles and
control the content on other pages. Visitors to the blog see the articles that
the owner has posted.

Figure 2. The blog posting form is painted on the blog
in place of the blog articles

Event Hierarchies
Building an application with three rulesets is quite a bit more complicated
than other examples we’ve seen. Keeping track of everything that’s
happening in your head can be difficult—especially since the
programming model is likely unfamiliar. One tool we can use to help with
the design of the application is called an event hierarchy. An event

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 16

hierarchy traces the events through the rules to see the causal
relationships.

Figure 3 shows the event hierarchy for the KBlog application. In the
graph, rectangular boxes are rules. They are named as verbs. The ovals
represent events. They are nouns.

Getting the right names and the meanings for events is important. This is
called “event normalization.” Thinking of events as nouns and rules as
verbs is a useful way to keep your design straight. If you find yourself
naming events with verbs, you’re probably not really creating an event-
driven application. Rather you’re using events to make a request.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 17

Figure 3. The event hierarchy for the KBlog application

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 18

In

Figure 3, the Web events are the entry point for any path through the
graph. There are three Web events: pageview, click, and submit. The click
events are differentiated by the name of the element that was clicked on.
Once the event causal chain is initiated from a Web event, the rest of the
event hierarchy consists of explicit events raised in the rules as indicated
in the graph. Rules that don’t produce events are terminals in the graph.

Understanding which rules were listening for which events and how they
interact is the key design space. The event hierarchy plays an important
role in understanding these interactions. Once that is done, writing the
rules is relatively simple.

Looking at the longest chain, from the Web submit event, we see that
submitting a blog post results in seven events being raised and six rules
firing. This might seem inefficient at first, but we could say the same thing
about control flow in a traditional programming model that uses multiple
objects or functions.
You might be tempted to think of the event hierarchy as a kind of state
diagram, but that’s not quite right—the transitions don’t happen because
of an input. The events themselves are the input. Events are most useful

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 19

when they are moving and so there’s no notion of “stopping” at some
point in the diagram. Once you enter at the top, you flow through to one of
the terminal rules.

Design Considerations
One of the objectives of the KBlog application was to create a design
where new functionality can be layered on to the base. The KBlog
Posting ruleset shows how this works. People who are posting never
use that ruleset. Rules in KBlog Posting affect the rest of the
application through the use of events.

We’ll discover later in this chapter that we haven’t gone
far enough in raising explicit events. Good rule design
might dictate that every rule raise an event when it’s

done—no terminal rules. Remember, events that don’t
have a listener are simply ignored. For example, the

show_articles rule is terminal in the event hierarchy in

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 20

Figure 3. At that point, the blog articles are showing, but there is no event
to notify other interested parties of that change in status of the blog.

Nothing in the rulesets we’ve built would use such an event, but what if
someone wants to layer functionality onto this application later in a
loosely coupled way? They might want to know when the articles are
ready so they can take the next step—whatever that is. Any given rule,
terminal now, may not always be so as new functionality is envisioned.
One objection to the design might be that the controller logic that is not
clearly delineated in some kind of controller module. For this application
the controller is in the various select statements. Using more
intermediary rules in a controller ruleset could bring the controller logic
for the application together, but finding and understanding the select
statements is easy.

Making the Back Button Work
One issue with the current implementation of the KBlog application is
that the back and forward buttons in the browser don’t work. That’s a big
problem because many people use them to navigate.
Browser back and forward buttons operate by moving the user around in
the browser’s history. The browser doesn’t know there’s a new page and
put it on the history unless the URL changes. SPI Web applications get
around this by writing URL fragments (the stuff after the # symbol) to the
URL of the page as the application state changes. Adding a fragment
doesn’t cause the browser to reload the page because fragments are
designed for interpage navigation.

Not only does the application have to rewrite the URL when the
application state changes, but it also has to change the application state
when the fragment changes. Otherwise the back button will change the
URL, but not the page. We’ll handle both of these problems in turn.

Change the URL Fragment
There’s currently no action in KRL to rewrite the URL. Fortunately KRL
rules can emit JavaScript as an action, giving them the ability to flexibly
adapt to situations that were not anticipated in the language.
The rules that rewrite the container (show_home and show_contact)
cause a change to the application state and should therefore rewrite the

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 21

URL. By deliberately not including place_form, the rule that displays
form, we keep it out of the history, avoiding the problem of back buttons
and form posting.

We’ll add a user-defined action to the KBlog Configuration
module to emit JavaScript that modifies the fragment2:
update_frag = defaction(name) {

 emit <|

 self.document.location.hash='!#{name}';

 |>;

};

Remember that we also need to update the provides pragma or this
definition won’t be visible outside the module.
Next we modify the appropriate rules to use the new action. Here’s the
show_contact rule that controls the Contact page:
rule show_contact {

 select when web click "#siteNavContact"

 or web hash_change newhash "/contact$"

 pre {

 contact_html = <<

 <h2 class="mainheading">Contact</h2>

 <article class="post">

 <p>Contact information here</p>

 </article>

 >>;

 title = config:blogtitle + " - Contact";

 }

 {

 config:paint_container(title, contact_html);

 config:update_frag(“/contact”);

 }

 }

2 The JavaScript location.hash variable has an inconsistent interface.
When you set it, you don’t include the #. But when you read it, the string
you get back has the # prepended.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 22

This ensures that whenever the Contact page is displayed, the URL will
have #!/contact appended:
http://www.windley.com/kblog/#!/contact

We make similar changes to the Home page so that it has #!/ appended
to the URL whenever we visit that page3.

Updating the Page When the Fragment
Changes

Now that we’ve modified each of the rules that control a page, they will
all be identified with the right fragment as you navigate from page to page
using the links in the navigation bar at the top of the blog. But that’s just
half the problem. The back and forward buttons are still broken. If you use
them the URL will change, but nothing changes the content as the URL
changes. As we said before, the browser does not alert the server when the
fragment changes.

To remedy this problem, we’ll use a jQuery plugin called hashchange.
Since the KRL Web endpoint has jQuery built in, using jQuery plugins is
easy.

The first step is to put the code for the plugin on our server and change the
jQuery variable in the final line so that we pass in $KOBJ instead:
...

// was --> })(jQuery);

})($KOBJ);

The plugin must call the KRL jQuery library, named $KOBJ, because the
Web endpoint uses jQuery in extreme compatibility mode to ensure that it
doesn’t interfere with Web pages that have already loaded jQuery.

3 Technically, I shouldn’t be putting the ! in the fragment since that
indicates to search engines that the page is available at the non-fragmented
URL for search engine crawlers. While we won’t enable this functionality
in this tutorial, it’s a good idea to make SPI pages crawlable. More
information, including techniques for building this functionality can be
found here: http://code.google.com/web/ajaxcrawling/docs/getting-
started.html

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 23

The second step is to load the plugin in our ruleset. KRL provides a
facility for loading external JavaScript resources as a pragma in the meta
section of the ruleset:
use javascript resource "http:/.../jquery.hashchange.js"

This loads the library in the browser once (and only once) when the ruleset
is executed.

Third, we need to deploy the hashchange watcher so that monitors the
fragment and raises an event to KRE when it changes. The hashchange
watcher is designed so that it runs a function.

You might be tempted to put the call to hashchange in the global block.
As programmers we’re used to “global” blocks being evaluated once. And
that’s true for KRL as well, but in KRL it’s once per event. Note that any
given interaction with the blog causes multiple events. Putting
hashchange in the global block would result in the watcher being added
to the page every time someone clicked a button, submitted a form, or
viewed the page. Because watcher is not idempotent, the effect would
compound—not what we want.
What we should do instead is place the fragment watcher once when we
initialize the blog. The init_html rule is responsible for initialization
and is only run once per blog interaction—on the initial pageview. In fact,
recall that init_html uses place_button() to put the buttons in the
navigation bar and place watchers on them to monitor when they’re
clicked. Here’s init_html modified to emit the correct JavaScript to
watch for fragment changes:
rule init_html {

 select when pageview ".*" setting ()

 {

 replace_inner("#about", blogconfig:about_text);

 blogconfig:place_button("Home");

 blogconfig:place_button("Contact");

 emit <|

 self.document.location.hash='!/';

 $KOBJ(window).hashchange(function() {

 if(KOBJ.a16x88.previous == undefined ||

 KOBJ.a16x88.previous != self.document.location.hash) {

 var app = KOBJ.get_application("a16x88");

 app.raise_event("hash_change",

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 24

 {"newhash": self.document.location.hash});

 KOBJ.a16x88.previous = self.document.location.hash;}});

 |>;

 }

 always {

 raise explicit event blog_ready

 }

}

The only thing new is the emit action. The JavaScript in that action sets
to fragment to the default page fragment and attaches a hashchange
JavaScript watcher to the window. The function that it calls uses the Web
endpoint runtime to get the app object associated with the current ruleset
and raise an event called hash_change to the KRL engine with the new
fragment as a parameter. The whole thing is wrapped in an if statement
to ensure it only runs once per fragment change.
Note that we are making use of the KOBJ object that is defined in the Web
runtime to store values. We namespace our definitions with the ruleset ID
to avoid variable name collisions with other rulesets the user may running.

The built-in raise_event() method allows us to pass event attributes
to KRE. We’ll make use of them in the rules that respond to the
hash_change event.

The last modification is to modify the rules that present the pages,
show_home and show_contact, to respond to the hash_change
event. There are two changes we need to make:

• We add another clause to the select statement that looks for a
hash_change event that has a parameter named newhash with
the value matched by the appropriate regular expression to ensure
we’re looking at the right page (/contact for the contact page
and / for the home page).

• We set the previous variable in the browser to ensure that this
event only happens once. This is most conveniently done in the
update_frag() action.

Here’s the select statement from the show_contact rule showing how
it has been changed:
select when web click "#siteNavContact"

 or web hash_change newhash "/contact$"

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 25

The result of the rule is unchanged.
Here is the new definition for update_frag() showing the changes to
the JavaScript that is emitted:
update_frag = defaction(name) {

 emit <|

 KOBJ.a16x88.previous = '#!#{name}';

 self.document.location.hash='!#{name}';

 |>;

};

Changes to the Event Hierarchy
Making the changes outlined above has created a new event,
hash_change. We’ve also modified rules to watch for that new event.
This modifies the event hierarchy as shown in Figure 4.

The event hierarchy diagram is only slightly more complicated:

Figure 4. Event hierarchy for KBlog application after
fixing the back button.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 26

Figure 4 shows the new event at the top and its interaction with the
show_home and show_contact rules. These rules are selected for
specific values of the event attributes.

With these changes navigating the blog causes the URL to update and,
conversely changing the URL changes the blog. Now the back and
forward buttons function correctly.

An Experiment in Loose Coupling
We’ve created an application that uses multiple rulesets and has a more
complicated event hierarchy than the KRL rulesets we’ve seen in previous
chapters. We’ve used JavaScript to make the back button work. We even
added a new event type (web:hash_change) using JavaScript.

KBlog makes an interesting laboratory for exploring how event-driven
applications can be extended in a loosely coupled way. We’ve argued in
previous chapters that because event-driven applications don’t rely on
request-response interactions, they can be more loosely coupled.
Functionality can be layered onto event-driven applications in ways that’s
difficult to imagine in more tightly coupled architectural styles.
Unlike a typical program—where control flow is made explicit through
the use of procedure calls or a Web program where control flow occurs
through the request-response interactions—the event consumers
themselves specify control flow in event-driven applications.
Traditionally programing languages have used the concept of ‘hooks’ to
make control flow more flexible. Hooks are not events, but rather are
places in the control flow where other programs can insert themselves into
the control flow. One key difference is that events provide a level of
indirection so that what runs can be dynamically determined.

Tweeting a Post
In this section we’ll expand the blog application by layering on
functionality that gives the author of a post the option of automatically
tweeting the blog post title. The goal is to use what’s already in the
application to add the functionality with minimal changes to the existing
application.
If you recall, the rule that listens for the event raised when a form is
submitted, handle_submit, raises the event

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 27

new_article_available. We can post the title of the blog article to
Twitter by listening for that event and doing what’s necessary to format
and send the information to Twitter:
rule send_tweet {

 select when explicit new_article_available

 pre {

 post = event:attr("post");

 tweet = <<

New blog post from #{ post.pick("$..postauthor")}:

#{ post.pick("$..posttitle")} http://www.windley.com/kblog

>>;

 }

 if (twitter:authorized()) then {

 twitter:update(tweet);

 }

}

Send_tweet listens for the new_article_available event and
uses the built-in KRL Twitter module to check the keys (stored in the key
pragma of the meta section of the ruleset) and update the associated
Twitter stream. Adding the additional functionality was easy because the
event was already being raised and the Twitter module does the heavy
lifting.

Making Tweeting Optional
We can take some satisfaction in our ability to easily add new
functionality to the original application. The next step—making tweeting
the post optional—however, reveals some mistakes in our previous design
that get in the way of modifying it by simply adding new rules without
modifying the original rules.
To give the author the option of tweeting or not, we want to add a
checkbox to the blog post form. Adding the checkbox is relatively easy if
an event reveals when the form is available. In the current design, the
place_form rule is terminal in the event hierarchy, meaning that it
raised no events.
Without an event, there’s nothing for the rule that adds the checkbox to
watch. We’ll modify the place_form rule to raise the explicit event

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 28

post_form_ready. Now the place_checkbox rule can listen for
that event and add a checkbox to the form:
rule place_checkbox {

 select when explicit post_form_ready

 pre {

 form_id = event:attr("form_id");

 checkbox_html = <<

<p class="checkbox">

 <label for="posttitle">Post to Twitter?</label>

 <input id="tweet" type="checkbox" checked="checked"></p>

 >>;

 }

 after(".text-area", checkbox_html);

}

This rule adds a checkbox to the form without modifying the original
ruleset beyond the fix to raise the event. Other changes to the form for
other features could also be added. The form now becomes a canvas that
rules can paint as they modify the functionality of the underlying
application. Figure 5 shows the change for the form when the rule fires.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 29

Figure 5. Form with Tweet checkbox added before the
submit button

Now that there’s a checkbox on the form, the handle_submit rule will
include it in the event attributes for the new_article_available
event because of how they are passed:
raise explicit event new_article_available

 for ["a16x89", "a16x91"]

 with post = event:attrs();

The function event:attrs()passes all atttributes along even as they
change based on other rules. However, when I first wrote
handle_submit, the raise statement looked like this:
raise explicit event new_article_available for a16x89 with

 postauthor = event:attr("postauthor") and

 posttitle = event:attr("posttitle") and

 postbody = event:attr("postbody");

The design of this explicit event worked fine for the original blog
functionality, but obviously, it won’t pass new attributes, like our tweet
checkbox value. Loose coupling demands that we make accommodation
for the uses we don’t envision. This sounds hard, but there are rules of
thumb that help. We’ll explore some of them in the next section.
The send_tweet rule can be modified to use the tweet checkbox value
by adding an additional boolean test to the rule condition as follows:
if (post.pick("$..tweet", true).length() &&

 twitter:authorized()) then {...

The optional second parameter to pick causes it to always return an array
if true. The pick operator will return individual values otherwise. The
checkbox input in HTML has a value if it’s check, but is just not sent
otherwise. By forcing the result to be an array, we can use length to
determine if it’s empty or not. A length of zero means it missing and we
don’t want to update Twitter in that case.

Lessons Learned
The new ruleset consists of two rules: place_checkbox for putting the
checkbox in the form and send_tweet for composing and sending the

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 30

tweet if the checkbox is checked. The new rules overlay the existing
application to add the functionality without interrupting the existing
features. If they’re not present then the functionality isn’t either. The
application keeps on working just as it did before. Adding the
functionality requires no configuration of the original application or
wiring the new functionality in place. Everything fits nicely together and
comes apart just as easily because of events.
But as we saw, there were design decisions we made in the original
application that made it more tightly coupled than we’d like. We ran into
two problems:

1. Terminal rules
2. Over-specified attributes

Let’s explore the rules that arise from solving these problems in turn.

Avoid Terminal Rules
Terminal rules reduce opportunities for loose coupling. Because the
place_form rule was terminal—it didn’t raise any events to indicate
what it had done—there was no way for another ruleset to extend its
functionality.
The lesson here is that terminal rules should be avoided if your goal is to
create extensible, loosely coupled applications that don’t require code
modifications. That said, as long as you have access to the code, adding
explicit events to rules when you need them isn’t difficult and is unlikely
to break anything, so it’s a low-cost, low-risk code modification.

Generalize Attribute Passing
Specificity in event attributes leads to tight coupling. When events have
attributes, we should send them on as a map. Picking out individual
attributes and sending them on by name means that only those attributes
will ever be available to other rules.

That doesn’t mean you can’t filter attribute maps to remove data you don’t
want available downstream. But the result ought to be everything but the
data you filter, not just the data you choose to pass on. Pass attributes as a
structure rather than by name for support the greatest flexibility.

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 31

Supporting Extensibility
The problems we highlighted in this section are easy to find and a simple
test application showed where they existed. Writing applications as
collections of rulesets in such a way that they support extending
functionality through accretion in a loosely coupled manner is practical,
but it does require some planning and design effort.

Changing the Event Hierarchy Again
The modification to the event hierarchy is fairly modest since only two
new rules were added. This reflects the loosely coupled nature of the
application. Figure 6 shows the changes.

Figure 6. Event hierarchy for KBlog with the ability to
tweet blog posts.

There is a new ruleset for the tweet rules. The place_form rule now
raises the post_form_ready event for which the place_checkbox
rule is listening. The send_tweet rule listens for the
new_article_available event. As they should, the new rules are

Copyright 2017, PJW, LC, All Rights Reserved, Do Not Distribute 32

accretive to the overall event hierarchy, not requiring changes to it, but
merely adding to it.

Building Loosely Coupled Applications
This chapter has focused on an application built from multiple rulesets.
The example, a blog application, isn’t the first kind of application that one
thinks about when building event-driven systems, but we’ve seen that
events are actually a reasonable way to build a blog.

As we mentioned, there are several improvements we could make to the
application if we wanted to use it in a production system, including using a
database instead of application variables and adding some kind of
authentication method to the posting subsystem. These changes would also
allow for the application to be multi-tenanted—allowing more than one
user to install and use it to manage their own blog.

The ideas of event normalization and even hierarchies provide tools for
understanding large event systems. Combined with the rules we
discovered for making event systems more loosely coupled, we’re
equipped to build and understand large event-driven applications.

